Cargando…
SMURFLite: combining simplified Markov random fields with simulated evolution improves remote homology detection for beta-structural proteins into the twilight zone
Motivation: One of the most successful methods to date for recognizing protein sequences that are evolutionarily related has been profile hidden Markov models (HMMs). However, these models do not capture pairwise statistical preferences of residues that are hydrogen bonded in beta sheets. These depe...
Autores principales: | Daniels, Noah M., Hosur, Raghavendra, Berger, Bonnie, Cowen, Lenore J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3338012/ https://www.ncbi.nlm.nih.gov/pubmed/22408192 http://dx.doi.org/10.1093/bioinformatics/bts110 |
Ejemplares similares
-
Augmented training of hidden Markov models to recognize remote homologs via simulated evolution
por: Kumar, Anoop, et al.
Publicado: (2009) -
Recognition of beta-structural motifs using hidden Markov models trained with simulated evolution
por: Kumar, Anoop, et al.
Publicado: (2010) -
Multicoil2: Predicting Coiled Coils and Their Oligomerization States from Sequence in the Twilight Zone
por: Trigg, Jason, et al.
Publicado: (2011) -
The twilight zone of cis element alignments
por: Sebastian, Alvaro, et al.
Publicado: (2013) -
Stem cell patenting in Europe - the twilight zone
por: Curley, Duncan
Publicado: (2008)