Cargando…

Molecular motor function in axonal transport in vivo probed by genetic and computational analysis in Drosophila

Bidirectional axonal transport driven by kinesin and dynein along microtubules is critical to neuronal viability and function. To evaluate axonal transport mechanisms, we developed a high-resolution imaging system to track the movement of amyloid precursor protein (APP) vesicles in Drosophila segmen...

Descripción completa

Detalles Bibliográficos
Autores principales: Reis, Gerald F., Yang, Ge, Szpankowski, Lukasz, Weaver, Carole, Shah, Sameer B., Robinson, John T., Hays, Thomas S., Danuser, Gaudenz, Goldstein, Lawrence S. B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The American Society for Cell Biology 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3338437/
https://www.ncbi.nlm.nih.gov/pubmed/22398725
http://dx.doi.org/10.1091/mbc.E11-11-0938
_version_ 1782231189695758336
author Reis, Gerald F.
Yang, Ge
Szpankowski, Lukasz
Weaver, Carole
Shah, Sameer B.
Robinson, John T.
Hays, Thomas S.
Danuser, Gaudenz
Goldstein, Lawrence S. B.
author_facet Reis, Gerald F.
Yang, Ge
Szpankowski, Lukasz
Weaver, Carole
Shah, Sameer B.
Robinson, John T.
Hays, Thomas S.
Danuser, Gaudenz
Goldstein, Lawrence S. B.
author_sort Reis, Gerald F.
collection PubMed
description Bidirectional axonal transport driven by kinesin and dynein along microtubules is critical to neuronal viability and function. To evaluate axonal transport mechanisms, we developed a high-resolution imaging system to track the movement of amyloid precursor protein (APP) vesicles in Drosophila segmental nerve axons. Computational analyses of a large number of moving vesicles in defined genetic backgrounds with partial reduction or overexpression of motor proteins enabled us to test with high precision existing and new models of motor activity and coordination in vivo. We discovered several previously unknown features of vesicle movement, including a surprising dependence of anterograde APP vesicle movement velocity on the amount of kinesin-1. This finding is largely incompatible with the biophysical properties of kinesin-1 derived from in vitro analyses. Our data also suggest kinesin-1 and cytoplasmic dynein motors assemble in stable mixtures on APP vesicles and their direction and velocity are controlled at least in part by dynein intermediate chain.
format Online
Article
Text
id pubmed-3338437
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher The American Society for Cell Biology
record_format MEDLINE/PubMed
spelling pubmed-33384372012-07-16 Molecular motor function in axonal transport in vivo probed by genetic and computational analysis in Drosophila Reis, Gerald F. Yang, Ge Szpankowski, Lukasz Weaver, Carole Shah, Sameer B. Robinson, John T. Hays, Thomas S. Danuser, Gaudenz Goldstein, Lawrence S. B. Mol Biol Cell Articles Bidirectional axonal transport driven by kinesin and dynein along microtubules is critical to neuronal viability and function. To evaluate axonal transport mechanisms, we developed a high-resolution imaging system to track the movement of amyloid precursor protein (APP) vesicles in Drosophila segmental nerve axons. Computational analyses of a large number of moving vesicles in defined genetic backgrounds with partial reduction or overexpression of motor proteins enabled us to test with high precision existing and new models of motor activity and coordination in vivo. We discovered several previously unknown features of vesicle movement, including a surprising dependence of anterograde APP vesicle movement velocity on the amount of kinesin-1. This finding is largely incompatible with the biophysical properties of kinesin-1 derived from in vitro analyses. Our data also suggest kinesin-1 and cytoplasmic dynein motors assemble in stable mixtures on APP vesicles and their direction and velocity are controlled at least in part by dynein intermediate chain. The American Society for Cell Biology 2012-05-01 /pmc/articles/PMC3338437/ /pubmed/22398725 http://dx.doi.org/10.1091/mbc.E11-11-0938 Text en © 2012 Reis et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0). “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society of Cell Biology.
spellingShingle Articles
Reis, Gerald F.
Yang, Ge
Szpankowski, Lukasz
Weaver, Carole
Shah, Sameer B.
Robinson, John T.
Hays, Thomas S.
Danuser, Gaudenz
Goldstein, Lawrence S. B.
Molecular motor function in axonal transport in vivo probed by genetic and computational analysis in Drosophila
title Molecular motor function in axonal transport in vivo probed by genetic and computational analysis in Drosophila
title_full Molecular motor function in axonal transport in vivo probed by genetic and computational analysis in Drosophila
title_fullStr Molecular motor function in axonal transport in vivo probed by genetic and computational analysis in Drosophila
title_full_unstemmed Molecular motor function in axonal transport in vivo probed by genetic and computational analysis in Drosophila
title_short Molecular motor function in axonal transport in vivo probed by genetic and computational analysis in Drosophila
title_sort molecular motor function in axonal transport in vivo probed by genetic and computational analysis in drosophila
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3338437/
https://www.ncbi.nlm.nih.gov/pubmed/22398725
http://dx.doi.org/10.1091/mbc.E11-11-0938
work_keys_str_mv AT reisgeraldf molecularmotorfunctioninaxonaltransportinvivoprobedbygeneticandcomputationalanalysisindrosophila
AT yangge molecularmotorfunctioninaxonaltransportinvivoprobedbygeneticandcomputationalanalysisindrosophila
AT szpankowskilukasz molecularmotorfunctioninaxonaltransportinvivoprobedbygeneticandcomputationalanalysisindrosophila
AT weavercarole molecularmotorfunctioninaxonaltransportinvivoprobedbygeneticandcomputationalanalysisindrosophila
AT shahsameerb molecularmotorfunctioninaxonaltransportinvivoprobedbygeneticandcomputationalanalysisindrosophila
AT robinsonjohnt molecularmotorfunctioninaxonaltransportinvivoprobedbygeneticandcomputationalanalysisindrosophila
AT haysthomass molecularmotorfunctioninaxonaltransportinvivoprobedbygeneticandcomputationalanalysisindrosophila
AT danusergaudenz molecularmotorfunctioninaxonaltransportinvivoprobedbygeneticandcomputationalanalysisindrosophila
AT goldsteinlawrencesb molecularmotorfunctioninaxonaltransportinvivoprobedbygeneticandcomputationalanalysisindrosophila