Cargando…
Impact of Treadmill Running and Sex on Hippocampal Neurogenesis in the Mouse Model of Amyotrophic Lateral Sclerosis
Hippocampal neurogenesis in the subgranular zone (SGZ) of dentate gyrus (DG) occurs throughout life and is regulated by pathological and physiological processes. The role of oxidative stress in hippocampal neurogenesis and its response to exercise or neurodegenerative diseases remains controversial....
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3338488/ https://www.ncbi.nlm.nih.gov/pubmed/22558322 http://dx.doi.org/10.1371/journal.pone.0036048 |
_version_ | 1782231201053933568 |
---|---|
author | Ma, Xiaoxing Hamadeh, Mazen J. Christie, Brain R. Foster, Jane A. Tarnopolsky, Mark A. |
author_facet | Ma, Xiaoxing Hamadeh, Mazen J. Christie, Brain R. Foster, Jane A. Tarnopolsky, Mark A. |
author_sort | Ma, Xiaoxing |
collection | PubMed |
description | Hippocampal neurogenesis in the subgranular zone (SGZ) of dentate gyrus (DG) occurs throughout life and is regulated by pathological and physiological processes. The role of oxidative stress in hippocampal neurogenesis and its response to exercise or neurodegenerative diseases remains controversial. The present study was designed to investigate the impact of oxidative stress, treadmill exercise and sex on hippocampal neurogenesis in a murine model of heightened oxidative stress (G93A mice). G93A and wild type (WT) mice were randomized to a treadmill running (EX) or a sedentary (SED) group for 1 or 4 wk. Immunohistochemistry was used to detect bromodeoxyuridine (BrdU) labeled proliferating cells, surviving cells, and their phenotype, as well as for determination of oxidative stress (3-NT; 8-OHdG). BDNF and IGF1 mRNA expression was assessed by in situ hybridization. Results showed that: (1) G93A-SED mice had greater hippocampal neurogenesis, BDNF mRNA, and 3-NT, as compared to WT-SED mice. (2) Treadmill running promoted hippocampal neurogenesis and BDNF mRNA content and lowered DNA oxidative damage (8-OHdG) in WT mice. (3) Male G93A mice showed significantly higher cell proliferation but a lower level of survival vs. female G93A mice. We conclude that G93A mice show higher hippocampal neurogenesis, in association with higher BDNF expression, yet running did not further enhance these phenomena in G93A mice, probably due to a ‘ceiling effect’ of an already heightened basal levels of hippocampal neurogenesis and BDNF expression. |
format | Online Article Text |
id | pubmed-3338488 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-33384882012-05-03 Impact of Treadmill Running and Sex on Hippocampal Neurogenesis in the Mouse Model of Amyotrophic Lateral Sclerosis Ma, Xiaoxing Hamadeh, Mazen J. Christie, Brain R. Foster, Jane A. Tarnopolsky, Mark A. PLoS One Research Article Hippocampal neurogenesis in the subgranular zone (SGZ) of dentate gyrus (DG) occurs throughout life and is regulated by pathological and physiological processes. The role of oxidative stress in hippocampal neurogenesis and its response to exercise or neurodegenerative diseases remains controversial. The present study was designed to investigate the impact of oxidative stress, treadmill exercise and sex on hippocampal neurogenesis in a murine model of heightened oxidative stress (G93A mice). G93A and wild type (WT) mice were randomized to a treadmill running (EX) or a sedentary (SED) group for 1 or 4 wk. Immunohistochemistry was used to detect bromodeoxyuridine (BrdU) labeled proliferating cells, surviving cells, and their phenotype, as well as for determination of oxidative stress (3-NT; 8-OHdG). BDNF and IGF1 mRNA expression was assessed by in situ hybridization. Results showed that: (1) G93A-SED mice had greater hippocampal neurogenesis, BDNF mRNA, and 3-NT, as compared to WT-SED mice. (2) Treadmill running promoted hippocampal neurogenesis and BDNF mRNA content and lowered DNA oxidative damage (8-OHdG) in WT mice. (3) Male G93A mice showed significantly higher cell proliferation but a lower level of survival vs. female G93A mice. We conclude that G93A mice show higher hippocampal neurogenesis, in association with higher BDNF expression, yet running did not further enhance these phenomena in G93A mice, probably due to a ‘ceiling effect’ of an already heightened basal levels of hippocampal neurogenesis and BDNF expression. Public Library of Science 2012-04-25 /pmc/articles/PMC3338488/ /pubmed/22558322 http://dx.doi.org/10.1371/journal.pone.0036048 Text en Ma et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Ma, Xiaoxing Hamadeh, Mazen J. Christie, Brain R. Foster, Jane A. Tarnopolsky, Mark A. Impact of Treadmill Running and Sex on Hippocampal Neurogenesis in the Mouse Model of Amyotrophic Lateral Sclerosis |
title | Impact of Treadmill Running and Sex on Hippocampal Neurogenesis in the Mouse Model of Amyotrophic Lateral Sclerosis |
title_full | Impact of Treadmill Running and Sex on Hippocampal Neurogenesis in the Mouse Model of Amyotrophic Lateral Sclerosis |
title_fullStr | Impact of Treadmill Running and Sex on Hippocampal Neurogenesis in the Mouse Model of Amyotrophic Lateral Sclerosis |
title_full_unstemmed | Impact of Treadmill Running and Sex on Hippocampal Neurogenesis in the Mouse Model of Amyotrophic Lateral Sclerosis |
title_short | Impact of Treadmill Running and Sex on Hippocampal Neurogenesis in the Mouse Model of Amyotrophic Lateral Sclerosis |
title_sort | impact of treadmill running and sex on hippocampal neurogenesis in the mouse model of amyotrophic lateral sclerosis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3338488/ https://www.ncbi.nlm.nih.gov/pubmed/22558322 http://dx.doi.org/10.1371/journal.pone.0036048 |
work_keys_str_mv | AT maxiaoxing impactoftreadmillrunningandsexonhippocampalneurogenesisinthemousemodelofamyotrophiclateralsclerosis AT hamadehmazenj impactoftreadmillrunningandsexonhippocampalneurogenesisinthemousemodelofamyotrophiclateralsclerosis AT christiebrainr impactoftreadmillrunningandsexonhippocampalneurogenesisinthemousemodelofamyotrophiclateralsclerosis AT fosterjanea impactoftreadmillrunningandsexonhippocampalneurogenesisinthemousemodelofamyotrophiclateralsclerosis AT tarnopolskymarka impactoftreadmillrunningandsexonhippocampalneurogenesisinthemousemodelofamyotrophiclateralsclerosis |