Cargando…
Decoding Semi-Constrained Brain Activity from fMRI Using Support Vector Machines and Gaussian Processes
Predicting a particular cognitive state from a specific pattern of fMRI voxel values is still a methodological challenge. Decoding brain activity is usually performed in highly controlled experimental paradigms characterized by a series of distinct states induced by a temporally constrained experime...
Autores principales: | Schrouff, Jessica, Kussé, Caroline, Wehenkel, Louis, Maquet, Pierre, Phillips, Christophe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3338538/ https://www.ncbi.nlm.nih.gov/pubmed/22563410 http://dx.doi.org/10.1371/journal.pone.0035860 |
Ejemplares similares
-
fMRI Artefact Rejection and Sleep Scoring Toolbox
por: Leclercq, Yves, et al.
Publicado: (2011) -
fMRI-based decoding of reward effects in binocular rivalry
por: Wilbertz, Gregor, et al.
Publicado: (2017) -
Temporally and Spatially Constrained ICA of fMRI Data Analysis
por: Wang, Zhi, et al.
Publicado: (2014) -
Subspace-constrained approaches to low-rank fMRI acceleration
por: Mason, Harry T., et al.
Publicado: (2021) -
Prospective motion correction improves the sensitivity of fMRI pattern decoding
por: Huang, Pei, et al.
Publicado: (2018)