Cargando…
Categorization of metabolome in bacterial systems
Analyses of biological databases such as those of genome, proteome, metabolome etc., have given insights in organization of biological systems. However, current efforts do not utilize the complete potential of available metabolome data. In this study, metabolome of bacterial systems with reliable an...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Biomedical Informatics
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3338974/ https://www.ncbi.nlm.nih.gov/pubmed/22553387 http://dx.doi.org/10.6026/97320630008309 |
Sumario: | Analyses of biological databases such as those of genome, proteome, metabolome etc., have given insights in organization of biological systems. However, current efforts do not utilize the complete potential of available metabolome data. In this study, metabolome of bacterial systems with reliable annotations are analyzed and a simple method is developed to categorize pathways hierarchically, using rational approach. Ninety-four bacterial systems having for each ≥ 250 annotated metabolic pathways were used to identify a set of common pathways. 42 pathways were present in all bacteria which are termed as Core/Stage I pathways. This set of pathways was used along with interacting compounds to categorize pathways in the metabolome hierarchically. In each metabolome non-interacting pathways were identified including at each stage. The case study of Escherichia coli O157, having 433 annotated pathways, shows that 378 pathways interact directly or indirectly with 41 core pathways while 14 pathways are noninteracting. These 378 pathways are distributed in Stage II (289), Stage III (75), Stage IV (13) and Stage V (1) category. The approach discussed here allows understanding of the complexity of metabolic networks. It has pointed out that core pathways could be most ancient pathways and compounds that interact with maximum pathways may be compounds with high biosynthetic potential, which can be easily identified. Further, it was shown that interactions of pathways at various stages could be one to one, one to many, many to one or many to many mappings through interacting compounds. The granularity of the method discussed being high; the impact of perturbation in a pathway on the metabolome and particularly sub networks can be studied precisely. The categorizations of metabolic pathways help in identifying choke point enzymes that are useful to identify probable drug targets. The Metabolic categorizations for 94 bacteria are available at http://115.111.37.202/mpe/. |
---|