Cargando…
Accurate state estimation from uncertain data and models: an application of data assimilation to mathematical models of human brain tumors
BACKGROUND: Data assimilation refers to methods for updating the state vector (initial condition) of a complex spatiotemporal model (such as a numerical weather model) by combining new observations with one or more prior forecasts. We consider the potential feasibility of this approach for making sh...
Autores principales: | Kostelich, Eric J, Kuang, Yang, McDaniel, Joshua M, Moore, Nina Z, Martirosyan, Nikolay L, Preul, Mark C |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3340325/ https://www.ncbi.nlm.nih.gov/pubmed/22185645 http://dx.doi.org/10.1186/1745-6150-6-64 |
Ejemplares similares
-
Patient-specific parameter estimates of glioblastoma multiforme growth dynamics from a model with explicit birth and death rates
por: Han, Lifeng, et al.
Publicado: (2019) -
Data assimilation: a mathematical introduction
por: Law, Kody, et al.
Publicado: (2015) -
Mathematical Analysis of Glioma Growth in a Murine Model
por: Rutter, Erica M., et al.
Publicado: (2017) -
Data Assimilation Methods for Neuronal State and Parameter Estimation
por: Moye, Matthew J., et al.
Publicado: (2018) -
Atmospheric modeling, data assimilation, and predictability
por: Kalnay, Eugenia, 1942-
Publicado: (2003)