Cargando…
Synthesis and Evaluation of a Series of 2-Substituted-5-Thiopropylpiperazine (Piperidine)-1,3,4-Oxadiazoles Derivatives as Atypical Antipsychotics
BACKGROUND: It is important to develop novel antipsychotics that can effectively treat schizophrenia with minor side-effects. The aim of our work is to develop novel antipsychotics that act on dopamine D(2) and D(3), serotonin 5-HT(1A) and 5-HT(2A) receptors with low affinity for the serotonin 5-HT(...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3340383/ https://www.ncbi.nlm.nih.gov/pubmed/22558126 http://dx.doi.org/10.1371/journal.pone.0035186 |
Sumario: | BACKGROUND: It is important to develop novel antipsychotics that can effectively treat schizophrenia with minor side-effects. The aim of our work is to develop novel antipsychotics that act on dopamine D(2) and D(3), serotonin 5-HT(1A) and 5-HT(2A) receptors with low affinity for the serotonin 5-HT(2C) and H(1) receptors, which can effectively cure positive symptoms, negative symptoms and cognitive impairment without the weight gain side-effect. METHODOLOGY/PRINCIPAL FINDINGS: A series of 2-substituted-5-thiopropylpiperazine (piperidine) -1,3,4-oxadiazoles derivatives have been synthesized and the target compounds were evaluated for binding affinities to D(2), 5-HT(1A) and 5-HT(2A) receptors. Preliminary results indicated that compounds 14, 16 and 22 exhibited high affinities to D(2), 5-HT(1A) and 5-HT(2A) receptors among these compounds. Further binding tests showed that compound 22 had high affinity for D(3) receptor, and low affinity for serotonin 5-HT(2C) and H(1) receptors. In addition, compound 22 inhibited apomorphine-induced climbing behavior and MK-801-induced hyperactivity with no extrapyramidal symptoms liability in mice. Moreover, compound 22 exhibited acceptable pharmacokinetic properties. CONCLUSIONS/SIGNIFICANCE: Compound 22 showed an atypical antipsychotic activity without liability for extrapyramidal symptoms. We anticipate compound 22 to be useful for developing a novel class of drug for the treatment of schizophrenia. |
---|