Cargando…
Cell migration: Fibroblasts find a new way to get ahead
Fibroblasts migrate on two-dimensional (2D) surfaces by forming lamellipodia—actin-rich extensions at the leading edge of the cell that have been well characterized. In this issue, Petrie et al. (2012. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201201124) show that in some 3D environments, includin...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3341167/ https://www.ncbi.nlm.nih.gov/pubmed/22547405 http://dx.doi.org/10.1083/jcb.201204039 |
Sumario: | Fibroblasts migrate on two-dimensional (2D) surfaces by forming lamellipodia—actin-rich extensions at the leading edge of the cell that have been well characterized. In this issue, Petrie et al. (2012. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201201124) show that in some 3D environments, including tissue explants, fibroblasts project different structures, termed lobopodia, at the leading edge. Lobopodia still assemble focal adhesions; however, similar to membrane blebs, they are driven by actomyosin contraction and do not accumulate active Rac, Cdc42, and phosphatidylinositol 3-kinases. |
---|