Cargando…
Development of a Humanized Antibody with High Therapeutic Potential against Dengue Virus Type 2
BACKGROUND: Dengue virus (DENV) is a significant public health threat in tropical and subtropical regions of the world. A therapeutic antibody against the viral envelope (E) protein represents a promising immunotherapy for disease control. METHODOLOGY/PRINCIPAL FINDINGS: We generated seventeen novel...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3341331/ https://www.ncbi.nlm.nih.gov/pubmed/22563515 http://dx.doi.org/10.1371/journal.pntd.0001636 |
Sumario: | BACKGROUND: Dengue virus (DENV) is a significant public health threat in tropical and subtropical regions of the world. A therapeutic antibody against the viral envelope (E) protein represents a promising immunotherapy for disease control. METHODOLOGY/PRINCIPAL FINDINGS: We generated seventeen novel mouse monoclonal antibodies (mAbs) with high reactivity against E protein of dengue virus type 2 (DENV-2). The mAbs were further dissected using recombinant E protein domain I-II (E-DI-II) and III (E-DIII) of DENV-2. Using plaque reduction neutralization test (PRNT) and mouse protection assay with lethal doses of DENV-2, we identified four serotype-specific mAbs that had high neutralizing activity against DENV-2 infection. Of the four, E-DIII targeting mAb DB32-6 was the strongest neutralizing mAb against diverse DENV-2 strains. Using phage display and virus-like particles (VLPs) we found that residue K310 in the E-DIII A-strand was key to mAb DB32-6 binding E-DIII. We successfully converted DB32-6 to a humanized version that retained potency for the neutralization of DENV-2 and did not enhance the viral infection. The DB32-6 showed therapeutic efficacy against mortality induced by different strains of DENV-2 in two mouse models even in post-exposure trials. CONCLUSIONS/SIGNIFICANCE: We used novel epitope mapping strategies, by combining phage display with VLPs, to identify the important A-strand epitopes with strong neutralizing activity. This study introduced potential therapeutic antibodies that might be capable of providing broad protection against diverse DENV-2 infections without enhancing activity in humans. |
---|