Cargando…
Enhancing the usability and performance of structured association mapping algorithms using automation, parallelization, and visualization in the GenAMap software system
BACKGROUND: Structured association mapping is proving to be a powerful strategy to find genetic polymorphisms associated with disease. However, these algorithms are often distributed as command line implementations that require expertise and effort to customize and put into practice. Because of the...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3342145/ https://www.ncbi.nlm.nih.gov/pubmed/22471660 http://dx.doi.org/10.1186/1471-2156-13-24 |
_version_ | 1782231640467046400 |
---|---|
author | Curtis, Ross E Goyal, Anuj Xing, Eric P |
author_facet | Curtis, Ross E Goyal, Anuj Xing, Eric P |
author_sort | Curtis, Ross E |
collection | PubMed |
description | BACKGROUND: Structured association mapping is proving to be a powerful strategy to find genetic polymorphisms associated with disease. However, these algorithms are often distributed as command line implementations that require expertise and effort to customize and put into practice. Because of the difficulty required to use these cutting-edge techniques, geneticists often revert to simpler, less powerful methods. RESULTS: To make structured association mapping more accessible to geneticists, we have developed an automatic processing system called Auto-SAM. Auto-SAM enables geneticists to run structured association mapping algorithms automatically, using parallelization. Auto-SAM includes algorithms to discover gene-networks and find population structure. Auto-SAM can also run popular association mapping algorithms, in addition to five structured association mapping algorithms. CONCLUSIONS: Auto-SAM is available through GenAMap, a front-end desktop visualization tool. GenAMap and Auto-SAM are implemented in JAVA; binaries for GenAMap can be downloaded from http://sailing.cs.cmu.edu/genamap. |
format | Online Article Text |
id | pubmed-3342145 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-33421452012-05-03 Enhancing the usability and performance of structured association mapping algorithms using automation, parallelization, and visualization in the GenAMap software system Curtis, Ross E Goyal, Anuj Xing, Eric P BMC Genet Software BACKGROUND: Structured association mapping is proving to be a powerful strategy to find genetic polymorphisms associated with disease. However, these algorithms are often distributed as command line implementations that require expertise and effort to customize and put into practice. Because of the difficulty required to use these cutting-edge techniques, geneticists often revert to simpler, less powerful methods. RESULTS: To make structured association mapping more accessible to geneticists, we have developed an automatic processing system called Auto-SAM. Auto-SAM enables geneticists to run structured association mapping algorithms automatically, using parallelization. Auto-SAM includes algorithms to discover gene-networks and find population structure. Auto-SAM can also run popular association mapping algorithms, in addition to five structured association mapping algorithms. CONCLUSIONS: Auto-SAM is available through GenAMap, a front-end desktop visualization tool. GenAMap and Auto-SAM are implemented in JAVA; binaries for GenAMap can be downloaded from http://sailing.cs.cmu.edu/genamap. BioMed Central 2012-04-03 /pmc/articles/PMC3342145/ /pubmed/22471660 http://dx.doi.org/10.1186/1471-2156-13-24 Text en Copyright ©2012 Curtis et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Software Curtis, Ross E Goyal, Anuj Xing, Eric P Enhancing the usability and performance of structured association mapping algorithms using automation, parallelization, and visualization in the GenAMap software system |
title | Enhancing the usability and performance of structured association mapping algorithms using automation, parallelization, and visualization in the GenAMap software system |
title_full | Enhancing the usability and performance of structured association mapping algorithms using automation, parallelization, and visualization in the GenAMap software system |
title_fullStr | Enhancing the usability and performance of structured association mapping algorithms using automation, parallelization, and visualization in the GenAMap software system |
title_full_unstemmed | Enhancing the usability and performance of structured association mapping algorithms using automation, parallelization, and visualization in the GenAMap software system |
title_short | Enhancing the usability and performance of structured association mapping algorithms using automation, parallelization, and visualization in the GenAMap software system |
title_sort | enhancing the usability and performance of structured association mapping algorithms using automation, parallelization, and visualization in the genamap software system |
topic | Software |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3342145/ https://www.ncbi.nlm.nih.gov/pubmed/22471660 http://dx.doi.org/10.1186/1471-2156-13-24 |
work_keys_str_mv | AT curtisrosse enhancingtheusabilityandperformanceofstructuredassociationmappingalgorithmsusingautomationparallelizationandvisualizationinthegenamapsoftwaresystem AT goyalanuj enhancingtheusabilityandperformanceofstructuredassociationmappingalgorithmsusingautomationparallelizationandvisualizationinthegenamapsoftwaresystem AT xingericp enhancingtheusabilityandperformanceofstructuredassociationmappingalgorithmsusingautomationparallelizationandvisualizationinthegenamapsoftwaresystem |