Cargando…

Magnetoencephalography with a chip-scale atomic magnetometer

We report on the measurement of somatosensory-evoked and spontaneous magnetoencephalography (MEG) signals with a chip-scale atomic magnetometer (CSAM) based on optical spectroscopy of alkali atoms. The uncooled, fiber-coupled CSAM has a sensitive volume of 0.77 mm(3) inside a sensor head of volume 1...

Descripción completa

Detalles Bibliográficos
Autores principales: Sander, T. H., Preusser, J., Mhaskar, R., Kitching, J., Trahms, L., Knappe, S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Optical Society of America 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3342203/
https://www.ncbi.nlm.nih.gov/pubmed/22567591
http://dx.doi.org/10.1364/BOE.3.000981
Descripción
Sumario:We report on the measurement of somatosensory-evoked and spontaneous magnetoencephalography (MEG) signals with a chip-scale atomic magnetometer (CSAM) based on optical spectroscopy of alkali atoms. The uncooled, fiber-coupled CSAM has a sensitive volume of 0.77 mm(3) inside a sensor head of volume 1 cm(3) and enabled convenient handling, similar to an electroencephalography (EEG) electrode. When positioned over O1 of a healthy human subject, α-oscillations were observed in the component of the magnetic field perpendicular to the scalp surface. Furthermore, by stimulation at the right wrist of the subject, somatosensory-evoked fields were measured with the sensors placed over C3. Higher noise levels of the CSAM were partly compensated by higher signal amplitudes due to the shorter distance between CSAM and scalp.