Cargando…
Tension and Robustness in Multitasking Cellular Networks
Cellular networks multitask by exhibiting distinct, context-dependent dynamics. However, network states (parameters) that generate a particular dynamic are often sub-optimal for others, defining a source of “tension” between them. Though multitasking is pervasive, it is not clear where tension arise...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3343128/ https://www.ncbi.nlm.nih.gov/pubmed/22577355 http://dx.doi.org/10.1371/journal.pcbi.1002491 |
_version_ | 1782231780090183680 |
---|---|
author | Wong, Jeffrey V. Li, Bochong You, Lingchong |
author_facet | Wong, Jeffrey V. Li, Bochong You, Lingchong |
author_sort | Wong, Jeffrey V. |
collection | PubMed |
description | Cellular networks multitask by exhibiting distinct, context-dependent dynamics. However, network states (parameters) that generate a particular dynamic are often sub-optimal for others, defining a source of “tension” between them. Though multitasking is pervasive, it is not clear where tension arises, what consequences it has, and how it is resolved. We developed a generic computational framework to examine the source and consequences of tension between pairs of dynamics exhibited by the well-studied RB-E2F switch regulating cell cycle entry. We found that tension arose from task-dependent shifts in parameters associated with network modules. Although parameter sets common to distinct dynamics did exist, tension reduced both their accessibility and resilience to perturbation, indicating a trade-off between “one-size-fits-all” solutions and robustness. With high tension, robustness can be preserved by dynamic shifting of modules, enabling the network to toggle between tasks, and by increasing network complexity, in this case by gene duplication. We propose that tension is a general constraint on the architecture and operation of multitasking biological networks. To this end, our work provides a framework to quantify the extent of tension between any network dynamics and how it affects network robustness. Such analysis would suggest new ways to interfere with network elements to elucidate the design principles of cellular networks. |
format | Online Article Text |
id | pubmed-3343128 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-33431282012-05-10 Tension and Robustness in Multitasking Cellular Networks Wong, Jeffrey V. Li, Bochong You, Lingchong PLoS Comput Biol Research Article Cellular networks multitask by exhibiting distinct, context-dependent dynamics. However, network states (parameters) that generate a particular dynamic are often sub-optimal for others, defining a source of “tension” between them. Though multitasking is pervasive, it is not clear where tension arises, what consequences it has, and how it is resolved. We developed a generic computational framework to examine the source and consequences of tension between pairs of dynamics exhibited by the well-studied RB-E2F switch regulating cell cycle entry. We found that tension arose from task-dependent shifts in parameters associated with network modules. Although parameter sets common to distinct dynamics did exist, tension reduced both their accessibility and resilience to perturbation, indicating a trade-off between “one-size-fits-all” solutions and robustness. With high tension, robustness can be preserved by dynamic shifting of modules, enabling the network to toggle between tasks, and by increasing network complexity, in this case by gene duplication. We propose that tension is a general constraint on the architecture and operation of multitasking biological networks. To this end, our work provides a framework to quantify the extent of tension between any network dynamics and how it affects network robustness. Such analysis would suggest new ways to interfere with network elements to elucidate the design principles of cellular networks. Public Library of Science 2012-04-26 /pmc/articles/PMC3343128/ /pubmed/22577355 http://dx.doi.org/10.1371/journal.pcbi.1002491 Text en Wong et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Wong, Jeffrey V. Li, Bochong You, Lingchong Tension and Robustness in Multitasking Cellular Networks |
title | Tension and Robustness in Multitasking Cellular Networks |
title_full | Tension and Robustness in Multitasking Cellular Networks |
title_fullStr | Tension and Robustness in Multitasking Cellular Networks |
title_full_unstemmed | Tension and Robustness in Multitasking Cellular Networks |
title_short | Tension and Robustness in Multitasking Cellular Networks |
title_sort | tension and robustness in multitasking cellular networks |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3343128/ https://www.ncbi.nlm.nih.gov/pubmed/22577355 http://dx.doi.org/10.1371/journal.pcbi.1002491 |
work_keys_str_mv | AT wongjeffreyv tensionandrobustnessinmultitaskingcellularnetworks AT libochong tensionandrobustnessinmultitaskingcellularnetworks AT youlingchong tensionandrobustnessinmultitaskingcellularnetworks |