Cargando…
Mitotic spindle orientation can direct cell fate and bias Notch activity in chick neural tube
Inheritance of apical membrane is proposed to maintain vertebrate neural stem cell proliferation. However, evidence for this is contradictory. Using direct clonal analysis and live imaging in chick neural tube, we show that divisions that separate apical and basal components generate an apical daugh...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
European Molecular Biology Organization
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3343353/ https://www.ncbi.nlm.nih.gov/pubmed/22491029 http://dx.doi.org/10.1038/embor.2012.42 |
Sumario: | Inheritance of apical membrane is proposed to maintain vertebrate neural stem cell proliferation. However, evidence for this is contradictory. Using direct clonal analysis and live imaging in chick neural tube, we show that divisions that separate apical and basal components generate an apical daughter, which becomes a neuron, and a basal daughter, which rapidly re-establishes apico-basal polarity and divides again. Using a recently described real-time reporter of Notch activity, we confirm progenitor status and demonstrate that division orientation can influence Notch signalling. In addition, we reveal loss of apical complex proteins on neuronal differentiation onset, suggesting that removal of this inherited complex is part of the neuronal differentiation mechanism. These findings reconcile contradictory data, link asymmetric division to Notch signalling dynamics and identify apical complex loss as a new step towards neuronal differentiation. |
---|