Cargando…
Immunofluorescent spectral analysis reveals the intrathecal cannabinoid agonist, AM1241, produces spinal anti-inflammatory cytokine responses in neuropathic rats exhibiting relief from allodynia
During pathological pain, the actions of the endocannabinoid system, including the cannabinoid 2 receptor (CB(2)R), leads to effective anti-allodynia and modifies a variety of spinal microglial and astrocyte responses. Here, following spinal administration of the CB(2)R compound, AM1241, we examined...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Inc
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3345359/ https://www.ncbi.nlm.nih.gov/pubmed/22574283 http://dx.doi.org/10.1002/brb3.44 |
_version_ | 1782232138005872640 |
---|---|
author | Wilkerson, Jenny L Gentry, Katherine R Dengler, Ellen C Wallace, James A Kerwin, Audra A Kuhn, Megan N Zvonok, Alexander M Thakur, Ganesh A Makriyannis, Alexandros Milligan, Erin D |
author_facet | Wilkerson, Jenny L Gentry, Katherine R Dengler, Ellen C Wallace, James A Kerwin, Audra A Kuhn, Megan N Zvonok, Alexander M Thakur, Ganesh A Makriyannis, Alexandros Milligan, Erin D |
author_sort | Wilkerson, Jenny L |
collection | PubMed |
description | During pathological pain, the actions of the endocannabinoid system, including the cannabinoid 2 receptor (CB(2)R), leads to effective anti-allodynia and modifies a variety of spinal microglial and astrocyte responses. Here, following spinal administration of the CB(2)R compound, AM1241, we examined immunoreactive alterations in markers for activated p38 mitogen-activated protein kinase, interleukin-1β (IL-1β), the anti-inflammatory cytokine, interleukin-10 (IL-10) as well as degradative endocannabinoid enzymes, and markers for altered glial responses in neuropathic rats. In these studies, the dorsal horn of the spinal cord and dorsal root ganglia were examined. AM1241 produced profound anti-allodynia with corresponding immunoreactive levels of p38 mitogen-activated kinase, IL-1β, IL-10, the endocannabinoid enzyme monoacylglycerol lipase, and astrocyte activation markers that were similar to nonneuropathic controls. In contrast, spinal AM1241 did not suppress the increased microglial responses observed in neuropathic rats. The differences in fluorescent markers were determined within discrete anatomical regions by applying spectral analysis methods, which virtually eliminated nonspecific signal during the quantification of specific immunofluorescent intensity. These data reveal expression profiles that support the actions of intrathecal AM1241 control pathological pain through anti-inflammatory mechanisms by modulating critical glial factors, and additionally decrease expression levels of endocannabinoid degradative enzymes. |
format | Online Article Text |
id | pubmed-3345359 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Blackwell Publishing Inc |
record_format | MEDLINE/PubMed |
spelling | pubmed-33453592012-05-09 Immunofluorescent spectral analysis reveals the intrathecal cannabinoid agonist, AM1241, produces spinal anti-inflammatory cytokine responses in neuropathic rats exhibiting relief from allodynia Wilkerson, Jenny L Gentry, Katherine R Dengler, Ellen C Wallace, James A Kerwin, Audra A Kuhn, Megan N Zvonok, Alexander M Thakur, Ganesh A Makriyannis, Alexandros Milligan, Erin D Brain Behav Original Research During pathological pain, the actions of the endocannabinoid system, including the cannabinoid 2 receptor (CB(2)R), leads to effective anti-allodynia and modifies a variety of spinal microglial and astrocyte responses. Here, following spinal administration of the CB(2)R compound, AM1241, we examined immunoreactive alterations in markers for activated p38 mitogen-activated protein kinase, interleukin-1β (IL-1β), the anti-inflammatory cytokine, interleukin-10 (IL-10) as well as degradative endocannabinoid enzymes, and markers for altered glial responses in neuropathic rats. In these studies, the dorsal horn of the spinal cord and dorsal root ganglia were examined. AM1241 produced profound anti-allodynia with corresponding immunoreactive levels of p38 mitogen-activated kinase, IL-1β, IL-10, the endocannabinoid enzyme monoacylglycerol lipase, and astrocyte activation markers that were similar to nonneuropathic controls. In contrast, spinal AM1241 did not suppress the increased microglial responses observed in neuropathic rats. The differences in fluorescent markers were determined within discrete anatomical regions by applying spectral analysis methods, which virtually eliminated nonspecific signal during the quantification of specific immunofluorescent intensity. These data reveal expression profiles that support the actions of intrathecal AM1241 control pathological pain through anti-inflammatory mechanisms by modulating critical glial factors, and additionally decrease expression levels of endocannabinoid degradative enzymes. Blackwell Publishing Inc 2012-03 /pmc/articles/PMC3345359/ /pubmed/22574283 http://dx.doi.org/10.1002/brb3.44 Text en © 2012 The Authors. Published by Wiley Periodicals, Inc. |
spellingShingle | Original Research Wilkerson, Jenny L Gentry, Katherine R Dengler, Ellen C Wallace, James A Kerwin, Audra A Kuhn, Megan N Zvonok, Alexander M Thakur, Ganesh A Makriyannis, Alexandros Milligan, Erin D Immunofluorescent spectral analysis reveals the intrathecal cannabinoid agonist, AM1241, produces spinal anti-inflammatory cytokine responses in neuropathic rats exhibiting relief from allodynia |
title | Immunofluorescent spectral analysis reveals the intrathecal cannabinoid agonist, AM1241, produces spinal anti-inflammatory cytokine responses in neuropathic rats exhibiting relief from allodynia |
title_full | Immunofluorescent spectral analysis reveals the intrathecal cannabinoid agonist, AM1241, produces spinal anti-inflammatory cytokine responses in neuropathic rats exhibiting relief from allodynia |
title_fullStr | Immunofluorescent spectral analysis reveals the intrathecal cannabinoid agonist, AM1241, produces spinal anti-inflammatory cytokine responses in neuropathic rats exhibiting relief from allodynia |
title_full_unstemmed | Immunofluorescent spectral analysis reveals the intrathecal cannabinoid agonist, AM1241, produces spinal anti-inflammatory cytokine responses in neuropathic rats exhibiting relief from allodynia |
title_short | Immunofluorescent spectral analysis reveals the intrathecal cannabinoid agonist, AM1241, produces spinal anti-inflammatory cytokine responses in neuropathic rats exhibiting relief from allodynia |
title_sort | immunofluorescent spectral analysis reveals the intrathecal cannabinoid agonist, am1241, produces spinal anti-inflammatory cytokine responses in neuropathic rats exhibiting relief from allodynia |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3345359/ https://www.ncbi.nlm.nih.gov/pubmed/22574283 http://dx.doi.org/10.1002/brb3.44 |
work_keys_str_mv | AT wilkersonjennyl immunofluorescentspectralanalysisrevealstheintrathecalcannabinoidagonistam1241producesspinalantiinflammatorycytokineresponsesinneuropathicratsexhibitingrelieffromallodynia AT gentrykatheriner immunofluorescentspectralanalysisrevealstheintrathecalcannabinoidagonistam1241producesspinalantiinflammatorycytokineresponsesinneuropathicratsexhibitingrelieffromallodynia AT denglerellenc immunofluorescentspectralanalysisrevealstheintrathecalcannabinoidagonistam1241producesspinalantiinflammatorycytokineresponsesinneuropathicratsexhibitingrelieffromallodynia AT wallacejamesa immunofluorescentspectralanalysisrevealstheintrathecalcannabinoidagonistam1241producesspinalantiinflammatorycytokineresponsesinneuropathicratsexhibitingrelieffromallodynia AT kerwinaudraa immunofluorescentspectralanalysisrevealstheintrathecalcannabinoidagonistam1241producesspinalantiinflammatorycytokineresponsesinneuropathicratsexhibitingrelieffromallodynia AT kuhnmegann immunofluorescentspectralanalysisrevealstheintrathecalcannabinoidagonistam1241producesspinalantiinflammatorycytokineresponsesinneuropathicratsexhibitingrelieffromallodynia AT zvonokalexanderm immunofluorescentspectralanalysisrevealstheintrathecalcannabinoidagonistam1241producesspinalantiinflammatorycytokineresponsesinneuropathicratsexhibitingrelieffromallodynia AT thakurganesha immunofluorescentspectralanalysisrevealstheintrathecalcannabinoidagonistam1241producesspinalantiinflammatorycytokineresponsesinneuropathicratsexhibitingrelieffromallodynia AT makriyannisalexandros immunofluorescentspectralanalysisrevealstheintrathecalcannabinoidagonistam1241producesspinalantiinflammatorycytokineresponsesinneuropathicratsexhibitingrelieffromallodynia AT milliganerind immunofluorescentspectralanalysisrevealstheintrathecalcannabinoidagonistam1241producesspinalantiinflammatorycytokineresponsesinneuropathicratsexhibitingrelieffromallodynia |