Cargando…
Molecular modeling and evaluation of binding mode and affinity of artemisinin-quinine hybrid and its congeners with Fe-protoporphyrin-IX as a putative receptor
A recent rational approach to anti-malarial drug design is characterized as “covalent biotherapy” involves linking of two molecules with individual intrinsic activity into a single agent, thus packaging dual activity into a single hybrid molecule. In view of this background and reported anti malaria...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Biomedical Informatics
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3346024/ https://www.ncbi.nlm.nih.gov/pubmed/22570518 http://dx.doi.org/10.6026/97320630008369 |
Sumario: | A recent rational approach to anti-malarial drug design is characterized as “covalent biotherapy” involves linking of two molecules with individual intrinsic activity into a single agent, thus packaging dual activity into a single hybrid molecule. In view of this background and reported anti malaria synergism between artemisinin and quinine; we describe the computer-assisted docking to predict molecular interaction and binding affinity of Artemisinin-Quinine hybrid and its derivatives with the intraparasitic haeme group of human haemoglobin. Starting from a crystallographic structure of Fe-protoporphyrin-IX, binding modes, orientation of peroxide bridge (Fe-O distance), docking score and interaction energy are predicted using the docking molecular mechanics based on generalized Born/surface area (MM-GBSA) solvation model. Seven new ligands were identified with a favourable glide score (XP score) and binding free energy (ΔG) with reference to the experimental structure from a data set of thirty four hybrid derivatives. The result shows the conformational property of the drug-receptor interaction and may lead to rational design and synthesis of improved potent artemisinin based hybrid antimalarial that target haemozoin formation. |
---|