Cargando…
A Two-Stage Random Forest-Based Pathway Analysis Method
Pathway analysis provides a powerful approach for identifying the joint effect of genes grouped into biologically-based pathways on disease. Pathway analysis is also an attractive approach for a secondary analysis of genome-wide association study (GWAS) data that may still yield new results from the...
Autores principales: | Chung, Ren-Hua, Chen, Ying-Erh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3346727/ https://www.ncbi.nlm.nih.gov/pubmed/22586488 http://dx.doi.org/10.1371/journal.pone.0036662 |
Ejemplares similares
-
Cost-Effectiveness Analysis of Different Genetic Testing Strategies for Lynch Syndrome in Taiwan
por: Chen, Ying-Erh, et al.
Publicado: (2016) -
Robustness of Random Forest-based gene selection methods
por: Kursa, Miron Bartosz
Publicado: (2014) -
Evaluating the performance of random forest and iterative random forest based methods when applied to gene expression data
por: Walker, Angelica M., et al.
Publicado: (2022) -
Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests
por: Nguyen, Thanh-Tung, et al.
Publicado: (2015) -
TSLRF: Two-Stage Algorithm Based on Least Angle Regression and Random Forest in genome-wide association studies
por: Sun, Jiali, et al.
Publicado: (2019)