Cargando…
Learning Transcriptional Regulatory Relationships Using Sparse Graphical Models
Understanding the organization and function of transcriptional regulatory networks by analyzing high-throughput gene expression profiles is a key problem in computational biology. The challenges in this work are 1) the lack of complete knowledge of the regulatory relationship between the regulators...
Autores principales: | Zhang, Xiang, Cheng, Wei, Listgarten, Jennifer, Kadie, Carl, Huang, Shunping, Wang, Wei, Heckerman, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3346750/ https://www.ncbi.nlm.nih.gov/pubmed/22586449 http://dx.doi.org/10.1371/journal.pone.0035762 |
Ejemplares similares
-
A Statistical Framework for Modeling HLA-Dependent T Cell Response Data
por: Listgarten, Jennifer, et al.
Publicado: (2007) -
The benefits of selecting phenotype-specific variants for applications of mixed models in genomics
por: Lippert, Christoph, et al.
Publicado: (2013) -
A powerful and efficient set test for genetic markers that handles confounders
por: Listgarten, Jennifer, et al.
Publicado: (2013) -
Greater power and computational efficiency for kernel-based association testing of sets of genetic variants
por: Lippert, Christoph, et al.
Publicado: (2014) -
Further Improvements to Linear Mixed Models for Genome-Wide Association
Studies
por: Widmer, Christian, et al.
Publicado: (2014)