Cargando…
Prenatal Exposure to Polycyclic Aromatic Hydrocarbons, Benzo[a]pyrene–DNA Adducts, and Genomic DNA Methylation in Cord Blood
Background: Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic environmental pollutants generated during incomplete combustion. After exposure and during metabolism, PAHs can form reactive epoxides that can covalently bind to DNA. These PAH–DNA adducts are established markers of cancer risk. P...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Institute of Environmental Health Sciences
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3346775/ https://www.ncbi.nlm.nih.gov/pubmed/22256332 http://dx.doi.org/10.1289/ehp.1104056 |
_version_ | 1782232225161412608 |
---|---|
author | Herbstman, Julie B. Tang, Deliang Zhu, Deguang Qu, Lirong Sjödin, Andreas Li, Zheng Camann, David Perera, Frederica P. |
author_facet | Herbstman, Julie B. Tang, Deliang Zhu, Deguang Qu, Lirong Sjödin, Andreas Li, Zheng Camann, David Perera, Frederica P. |
author_sort | Herbstman, Julie B. |
collection | PubMed |
description | Background: Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic environmental pollutants generated during incomplete combustion. After exposure and during metabolism, PAHs can form reactive epoxides that can covalently bind to DNA. These PAH–DNA adducts are established markers of cancer risk. PAH exposure has been associated with epigenetic alterations, including genomic cytosine methylation. Both global hypomethylation and hypermethylation of specific genes have been associated with cancer and other diseases in humans. Experimental evidence suggests that PAH–DNA adduct formation may preferentially target methylated genomic regions. Early embryonic development may be a particularly susceptible period for PAH exposure, resulting in both increased PAH–DNA adducts and altered DNA methylation. Objective: We explored whether prenatal exposure to PAHs is associated with genomic DNA methylation in cord blood and whether methylation levels are associated with the presence of detectable PAH–DNA adducts. Methods: In a longitudinal cohort study of nonsmoking women in New York City, we measured PAH exposure during pregnancy using personal air monitors, assessed PAH internal dose using prenatal urinary metabolites (in a subset), and quantified benzo[a]pyrene–DNA adducts and genomic DNA methylation in cord blood DNA among 164 participants. Results: Prenatal PAH exposure was associated with lower global methylation in umbilical cord white blood cells (p = 0.05), but global methylation levels were positively associated with the presence of detectable adducts in cord blood (p = 0.01). Conclusions: These observations suggest that PAH exposure was adequate to alter global methylation in our study population. Additional epidemiologic studies that can measure site-specific cytosine methylation and adduct formation will improve our ability to understand this complex molecular pathway in vivo. |
format | Online Article Text |
id | pubmed-3346775 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | National Institute of Environmental Health Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-33467752012-05-29 Prenatal Exposure to Polycyclic Aromatic Hydrocarbons, Benzo[a]pyrene–DNA Adducts, and Genomic DNA Methylation in Cord Blood Herbstman, Julie B. Tang, Deliang Zhu, Deguang Qu, Lirong Sjödin, Andreas Li, Zheng Camann, David Perera, Frederica P. Environ Health Perspect Research Background: Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic environmental pollutants generated during incomplete combustion. After exposure and during metabolism, PAHs can form reactive epoxides that can covalently bind to DNA. These PAH–DNA adducts are established markers of cancer risk. PAH exposure has been associated with epigenetic alterations, including genomic cytosine methylation. Both global hypomethylation and hypermethylation of specific genes have been associated with cancer and other diseases in humans. Experimental evidence suggests that PAH–DNA adduct formation may preferentially target methylated genomic regions. Early embryonic development may be a particularly susceptible period for PAH exposure, resulting in both increased PAH–DNA adducts and altered DNA methylation. Objective: We explored whether prenatal exposure to PAHs is associated with genomic DNA methylation in cord blood and whether methylation levels are associated with the presence of detectable PAH–DNA adducts. Methods: In a longitudinal cohort study of nonsmoking women in New York City, we measured PAH exposure during pregnancy using personal air monitors, assessed PAH internal dose using prenatal urinary metabolites (in a subset), and quantified benzo[a]pyrene–DNA adducts and genomic DNA methylation in cord blood DNA among 164 participants. Results: Prenatal PAH exposure was associated with lower global methylation in umbilical cord white blood cells (p = 0.05), but global methylation levels were positively associated with the presence of detectable adducts in cord blood (p = 0.01). Conclusions: These observations suggest that PAH exposure was adequate to alter global methylation in our study population. Additional epidemiologic studies that can measure site-specific cytosine methylation and adduct formation will improve our ability to understand this complex molecular pathway in vivo. National Institute of Environmental Health Sciences 2012-01-17 2012-05 /pmc/articles/PMC3346775/ /pubmed/22256332 http://dx.doi.org/10.1289/ehp.1104056 Text en http://creativecommons.org/publicdomain/mark/1.0/ Publication of EHP lies in the public domain and is therefore without copyright. All text from EHP may be reprinted freely. Use of materials published in EHP should be acknowledged (for example, ?Reproduced with permission from Environmental Health Perspectives?); pertinent reference information should be provided for the article from which the material was reproduced. Articles from EHP, especially the News section, may contain photographs or illustrations copyrighted by other commercial organizations or individuals that may not be used without obtaining prior approval from the holder of the copyright. |
spellingShingle | Research Herbstman, Julie B. Tang, Deliang Zhu, Deguang Qu, Lirong Sjödin, Andreas Li, Zheng Camann, David Perera, Frederica P. Prenatal Exposure to Polycyclic Aromatic Hydrocarbons, Benzo[a]pyrene–DNA Adducts, and Genomic DNA Methylation in Cord Blood |
title | Prenatal Exposure to Polycyclic Aromatic Hydrocarbons, Benzo[a]pyrene–DNA Adducts, and Genomic DNA Methylation in Cord Blood |
title_full | Prenatal Exposure to Polycyclic Aromatic Hydrocarbons, Benzo[a]pyrene–DNA Adducts, and Genomic DNA Methylation in Cord Blood |
title_fullStr | Prenatal Exposure to Polycyclic Aromatic Hydrocarbons, Benzo[a]pyrene–DNA Adducts, and Genomic DNA Methylation in Cord Blood |
title_full_unstemmed | Prenatal Exposure to Polycyclic Aromatic Hydrocarbons, Benzo[a]pyrene–DNA Adducts, and Genomic DNA Methylation in Cord Blood |
title_short | Prenatal Exposure to Polycyclic Aromatic Hydrocarbons, Benzo[a]pyrene–DNA Adducts, and Genomic DNA Methylation in Cord Blood |
title_sort | prenatal exposure to polycyclic aromatic hydrocarbons, benzo[a]pyrene–dna adducts, and genomic dna methylation in cord blood |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3346775/ https://www.ncbi.nlm.nih.gov/pubmed/22256332 http://dx.doi.org/10.1289/ehp.1104056 |
work_keys_str_mv | AT herbstmanjulieb prenatalexposuretopolycyclicaromatichydrocarbonsbenzoapyrenednaadductsandgenomicdnamethylationincordblood AT tangdeliang prenatalexposuretopolycyclicaromatichydrocarbonsbenzoapyrenednaadductsandgenomicdnamethylationincordblood AT zhudeguang prenatalexposuretopolycyclicaromatichydrocarbonsbenzoapyrenednaadductsandgenomicdnamethylationincordblood AT qulirong prenatalexposuretopolycyclicaromatichydrocarbonsbenzoapyrenednaadductsandgenomicdnamethylationincordblood AT sjodinandreas prenatalexposuretopolycyclicaromatichydrocarbonsbenzoapyrenednaadductsandgenomicdnamethylationincordblood AT lizheng prenatalexposuretopolycyclicaromatichydrocarbonsbenzoapyrenednaadductsandgenomicdnamethylationincordblood AT camanndavid prenatalexposuretopolycyclicaromatichydrocarbonsbenzoapyrenednaadductsandgenomicdnamethylationincordblood AT pererafredericap prenatalexposuretopolycyclicaromatichydrocarbonsbenzoapyrenednaadductsandgenomicdnamethylationincordblood |