Cargando…

Prenatal Lead Levels, Plasma Amyloid β Levels, and Gene Expression in Young Adulthood

Background: Animal studies suggest that early-life lead exposure influences gene expression and production of proteins associated with Alzheimer’s disease (AD). Objectives: We attempted to assess the relationship between early-life lead exposure and potential biomarkers for AD among young men and wo...

Descripción completa

Detalles Bibliográficos
Autores principales: Mazumdar, Maitreyi, Xia, Weiming, Hofmann, Oliver, Gregas, Matthew, Sui, Shannan Ho, Hide, Winston, Yang, Ting, Needleman, Herbert L., Bellinger, David C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Institute of Environmental Health Sciences 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3346789/
https://www.ncbi.nlm.nih.gov/pubmed/22313790
http://dx.doi.org/10.1289/ehp.1104474
Descripción
Sumario:Background: Animal studies suggest that early-life lead exposure influences gene expression and production of proteins associated with Alzheimer’s disease (AD). Objectives: We attempted to assess the relationship between early-life lead exposure and potential biomarkers for AD among young men and women. We also attempted to assess whether early-life lead exposure was associated with changes in expression of AD-related genes. Methods: We used sandwich enzyme-linked immunosorbent assays (ELISA) to measure plasma concentrations of amyloid β proteins Aβ(40) and Aβ(42) among 55 adults who had participated as newborns and young children in a prospective cohort study of the effects of lead exposure on development. We used RNA microarray techniques to analyze gene expression. Results: Mean plasma Aβ(42) concentrations were lower among 13 participants with high umbilical cord blood lead concentrations (≥ 10 μg/dL) than in 42 participants with lower cord blood lead concentrations (p = 0.08). Among 10 participants with high prenatal lead exposure, we found evidence of an inverse relationship between umbilical cord lead concentration and expression of ADAM metallopeptidase domain 9 (ADAM9), reticulon 4 (RTN4), and low-density lipoprotein receptor-related protein associated protein 1 (LRPAP1) genes, whose products are believed to affect Aβ production and deposition. Gene network analysis suggested enrichment in gene sets involved in nerve growth and general cell development. Conclusions: Data from our exploratory study suggest that prenatal lead exposure may influence Aβ-related biological pathways that have been implicated in AD onset. Gene network analysis identified further candidates to study the mechanisms of developmental lead neurotoxicity.