Cargando…

Effect of Sodium Chloride on Aggregation of Merocyanine 540 and Photosensitized Inactivation of Staphylococcus aureus and Pseudomonas aeruginosa

Merocyanine 540 (MC540) is used as a photosensitizer for the inactivation of microorganisms. The following is already known about MC540: firstly, MC540 exists in distilled water in both monomeric and dimeric forms, and the addition of salts into a MC540 solution leads to the formation of large aggre...

Descripción completa

Detalles Bibliográficos
Autores principales: Shmigol, T.A., Bekhalo, V.A., Sysolyatina, Е.V., Nagurskaya, E.V., Ermolaeva, S.A., Potapenko, A.Ya.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: A.I. Gordeyev 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3347617/
https://www.ncbi.nlm.nih.gov/pubmed/22649710
_version_ 1782232305847238656
author Shmigol, T.A.
Bekhalo, V.A.
Sysolyatina, Е.V.
Nagurskaya, E.V.
Ermolaeva, S.A.
Potapenko, A.Ya.
author_facet Shmigol, T.A.
Bekhalo, V.A.
Sysolyatina, Е.V.
Nagurskaya, E.V.
Ermolaeva, S.A.
Potapenko, A.Ya.
author_sort Shmigol, T.A.
collection PubMed
description Merocyanine 540 (MC540) is used as a photosensitizer for the inactivation of microorganisms. The following is already known about MC540: firstly, MC540 exists in distilled water in both monomeric and dimeric forms, and the addition of salts into a MC540 solution leads to the formation of large aggregates that can be detected by the resonance light scattering technique. Secondly, singlet oxygen can only be photogenerated by MC540 monomers. In the present work, we studied the effect of MC540 in the aggregated state on the rate of photosensitized inactivation ofStaphylococcus aureusandPseudomonas aeruginosa. To this end, bacteria either in MC540-containing distilled water or in a 0.25 M sodium chloride aqueous solution also containing MC540 are irradiated (546 nm). The results show that, in the presence of salt, the aggregation of MC540 greatly increases the efficiency of the MC540-photosensitized inactivation ofP. aeruginosaandS. aureus. In the presence of salt, the rates ofP. aeruginosaandS. aureusinactivation increase by factors of 10 and 30, respectively, in comparison with the rate of inactivation observed in the case of distilled water. Our results suggest that a salt-induced photosensitization mechanism can switch from the singlet oxygen to the free-radical pathway.
format Online
Article
Text
id pubmed-3347617
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher A.I. Gordeyev
record_format MEDLINE/PubMed
spelling pubmed-33476172012-05-30 Effect of Sodium Chloride on Aggregation of Merocyanine 540 and Photosensitized Inactivation of Staphylococcus aureus and Pseudomonas aeruginosa Shmigol, T.A. Bekhalo, V.A. Sysolyatina, Е.V. Nagurskaya, E.V. Ermolaeva, S.A. Potapenko, A.Ya. Acta Naturae Research Article Merocyanine 540 (MC540) is used as a photosensitizer for the inactivation of microorganisms. The following is already known about MC540: firstly, MC540 exists in distilled water in both monomeric and dimeric forms, and the addition of salts into a MC540 solution leads to the formation of large aggregates that can be detected by the resonance light scattering technique. Secondly, singlet oxygen can only be photogenerated by MC540 monomers. In the present work, we studied the effect of MC540 in the aggregated state on the rate of photosensitized inactivation ofStaphylococcus aureusandPseudomonas aeruginosa. To this end, bacteria either in MC540-containing distilled water or in a 0.25 M sodium chloride aqueous solution also containing MC540 are irradiated (546 nm). The results show that, in the presence of salt, the aggregation of MC540 greatly increases the efficiency of the MC540-photosensitized inactivation ofP. aeruginosaandS. aureus. In the presence of salt, the rates ofP. aeruginosaandS. aureusinactivation increase by factors of 10 and 30, respectively, in comparison with the rate of inactivation observed in the case of distilled water. Our results suggest that a salt-induced photosensitization mechanism can switch from the singlet oxygen to the free-radical pathway. A.I. Gordeyev 2011 /pmc/articles/PMC3347617/ /pubmed/22649710 Text en Copyright © 2011 Park-media Ltd. http://creativecommons.org/licenses/by/2.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Shmigol, T.A.
Bekhalo, V.A.
Sysolyatina, Е.V.
Nagurskaya, E.V.
Ermolaeva, S.A.
Potapenko, A.Ya.
Effect of Sodium Chloride on Aggregation of Merocyanine 540 and Photosensitized Inactivation of Staphylococcus aureus and Pseudomonas aeruginosa
title Effect of Sodium Chloride on Aggregation of Merocyanine 540 and Photosensitized Inactivation of Staphylococcus aureus and Pseudomonas aeruginosa
title_full Effect of Sodium Chloride on Aggregation of Merocyanine 540 and Photosensitized Inactivation of Staphylococcus aureus and Pseudomonas aeruginosa
title_fullStr Effect of Sodium Chloride on Aggregation of Merocyanine 540 and Photosensitized Inactivation of Staphylococcus aureus and Pseudomonas aeruginosa
title_full_unstemmed Effect of Sodium Chloride on Aggregation of Merocyanine 540 and Photosensitized Inactivation of Staphylococcus aureus and Pseudomonas aeruginosa
title_short Effect of Sodium Chloride on Aggregation of Merocyanine 540 and Photosensitized Inactivation of Staphylococcus aureus and Pseudomonas aeruginosa
title_sort effect of sodium chloride on aggregation of merocyanine 540 and photosensitized inactivation of staphylococcus aureus and pseudomonas aeruginosa
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3347617/
https://www.ncbi.nlm.nih.gov/pubmed/22649710
work_keys_str_mv AT shmigolta effectofsodiumchlorideonaggregationofmerocyanine540andphotosensitizedinactivationofstaphylococcusaureusandpseudomonasaeruginosa
AT bekhalova effectofsodiumchlorideonaggregationofmerocyanine540andphotosensitizedinactivationofstaphylococcusaureusandpseudomonasaeruginosa
AT sysolyatinaev effectofsodiumchlorideonaggregationofmerocyanine540andphotosensitizedinactivationofstaphylococcusaureusandpseudomonasaeruginosa
AT nagurskayaev effectofsodiumchlorideonaggregationofmerocyanine540andphotosensitizedinactivationofstaphylococcusaureusandpseudomonasaeruginosa
AT ermolaevasa effectofsodiumchlorideonaggregationofmerocyanine540andphotosensitizedinactivationofstaphylococcusaureusandpseudomonasaeruginosa
AT potapenkoaya effectofsodiumchlorideonaggregationofmerocyanine540andphotosensitizedinactivationofstaphylococcusaureusandpseudomonasaeruginosa