Cargando…

Inferring a protein interaction map of Mycobacterium tuberculosis based on sequences and interologs

BACKGROUND: Mycobacterium tuberculosis is an infectious bacterium posing serious threats to human health. Due to the difficulty in performing molecular biology experiments to detect protein interactions, reconstruction of a protein interaction map of M. tuberculosis by computational methods will pro...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Zhi-Ping, Wang, Jiguang, Qiu, Yu-Qing, Leung, Ross KK, Zhang, Xiang-Sun, Tsui, Stephen KW, Chen, Luonan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3348046/
https://www.ncbi.nlm.nih.gov/pubmed/22595003
http://dx.doi.org/10.1186/1471-2105-13-S7-S6
Descripción
Sumario:BACKGROUND: Mycobacterium tuberculosis is an infectious bacterium posing serious threats to human health. Due to the difficulty in performing molecular biology experiments to detect protein interactions, reconstruction of a protein interaction map of M. tuberculosis by computational methods will provide crucial information to understand the biological processes in the pathogenic microorganism, as well as provide the framework upon which new therapeutic approaches can be developed. RESULTS: In this paper, we constructed an integrated M. tuberculosis protein interaction network by machine learning and ortholog-based methods. Firstly, we built a support vector machine (SVM) method to infer the protein interactions of M. tuberculosis H37Rv by gene sequence information. We tested our predictors in Escherichia coli and mapped the genetic codon features underlying its protein interactions to M. tuberculosis. Moreover, the documented interactions of 14 other species were mapped to the interactome of M. tuberculosis by the interolog method. The ensemble protein interactions were validated by various functional relationships, i.e., gene coexpression, evolutionary relationship and functional similarity, extracted from heterogeneous data sources. The accuracy and validation demonstrate the effectiveness and efficiency of our framework. CONCLUSIONS: A protein interaction map of M. tuberculosis is inferred from genetic codons and interologs. The prediction accuracy and numerically experimental validation demonstrate the effectiveness and efficiency of our method. Furthermore, our methods can be straightforwardly extended to infer the protein interactions of other bacterial species.