Cargando…

Anti-Inflammatory Activities of Inotilone from Phellinus linteus through the Inhibition of MMP-9, NF-κB, and MAPK Activation In Vitro and In Vivo

Inotilone was isolated from Phellinus linteus. The anti-inflammatory effects of inotilone were studied by using lipopolysaccharide (LPS)-stimulated mouse macrophage RAW264.7 cells and λ-carrageenan (Carr)-induced hind mouse paw edema model. Inotilone was tested for its ability to reduce nitric oxide...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Guan-Jhong, Huang, Shyh-Shyun, Deng, Jeng-Shyan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3348146/
https://www.ncbi.nlm.nih.gov/pubmed/22590514
http://dx.doi.org/10.1371/journal.pone.0035922
_version_ 1782232378654064640
author Huang, Guan-Jhong
Huang, Shyh-Shyun
Deng, Jeng-Shyan
author_facet Huang, Guan-Jhong
Huang, Shyh-Shyun
Deng, Jeng-Shyan
author_sort Huang, Guan-Jhong
collection PubMed
description Inotilone was isolated from Phellinus linteus. The anti-inflammatory effects of inotilone were studied by using lipopolysaccharide (LPS)-stimulated mouse macrophage RAW264.7 cells and λ-carrageenan (Carr)-induced hind mouse paw edema model. Inotilone was tested for its ability to reduce nitric oxide (NO) production, and the inducible nitric oxide synthase (iNOS) expression. Inotilone was tested in the inhibitor of mitogen-activated protein kinase (MAPK) [extracellular signal-regulated protein kinase (ERK), c-Jun NH(2)-terminal kinase (JNK), p38], and nuclear factor-κB (NF-κB), matrix-metalloproteinase (MMP)-9 protein expressions in LPS-stimulated RAW264.7 cells. When RAW264.7 macrophages were treated with inotilone together with LPS, a significant concentration-dependent inhibition of NO production was detected. Western blotting revealed that inotilone blocked the protein expression of iNOS, NF-κB, and MMP-9 in LPS-stimulated RAW264.7 macrophages, significantly. Inotilone also inhibited LPS-induced ERK, JNK, and p38 phosphorylation. In in vivo tests, inotilone decreased the paw edema at the 4(th) and the 5(th) h after Carr administration, and it increased the activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx). We also demonstrated that inotilone significantly attenuated the malondialdehyde (MDA) level in the edema paw at the 5(th) h after Carr injection. Inotilone decreased the NO and tumor necrosis factor (TNF-α) levels on serum at the 5(th) h after Carr injection. Western blotting revealed that inotilone decreased Carr-induced iNOS, cyclooxygenase-2 (COX-2), NF-κB, and MMP-9 expressions at the 5(th) h in the edema paw. An intraperitoneal (i.p.) injection treatment with inotilone diminished neutrophil infiltration into sites of inflammation, as did indomethacin (Indo). The anti-inflammatory activities of inotilone might be related to decrease the levels of MDA, iNOS, COX-2, NF-κB, and MMP-9 and increase the activities of CAT, SOD, and GPx in the paw edema through the suppression of TNF-α and NO. This study presents the potential utilization of inotilone, as a lead for the development of anti-inflammatory drugs.
format Online
Article
Text
id pubmed-3348146
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-33481462012-05-15 Anti-Inflammatory Activities of Inotilone from Phellinus linteus through the Inhibition of MMP-9, NF-κB, and MAPK Activation In Vitro and In Vivo Huang, Guan-Jhong Huang, Shyh-Shyun Deng, Jeng-Shyan PLoS One Research Article Inotilone was isolated from Phellinus linteus. The anti-inflammatory effects of inotilone were studied by using lipopolysaccharide (LPS)-stimulated mouse macrophage RAW264.7 cells and λ-carrageenan (Carr)-induced hind mouse paw edema model. Inotilone was tested for its ability to reduce nitric oxide (NO) production, and the inducible nitric oxide synthase (iNOS) expression. Inotilone was tested in the inhibitor of mitogen-activated protein kinase (MAPK) [extracellular signal-regulated protein kinase (ERK), c-Jun NH(2)-terminal kinase (JNK), p38], and nuclear factor-κB (NF-κB), matrix-metalloproteinase (MMP)-9 protein expressions in LPS-stimulated RAW264.7 cells. When RAW264.7 macrophages were treated with inotilone together with LPS, a significant concentration-dependent inhibition of NO production was detected. Western blotting revealed that inotilone blocked the protein expression of iNOS, NF-κB, and MMP-9 in LPS-stimulated RAW264.7 macrophages, significantly. Inotilone also inhibited LPS-induced ERK, JNK, and p38 phosphorylation. In in vivo tests, inotilone decreased the paw edema at the 4(th) and the 5(th) h after Carr administration, and it increased the activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx). We also demonstrated that inotilone significantly attenuated the malondialdehyde (MDA) level in the edema paw at the 5(th) h after Carr injection. Inotilone decreased the NO and tumor necrosis factor (TNF-α) levels on serum at the 5(th) h after Carr injection. Western blotting revealed that inotilone decreased Carr-induced iNOS, cyclooxygenase-2 (COX-2), NF-κB, and MMP-9 expressions at the 5(th) h in the edema paw. An intraperitoneal (i.p.) injection treatment with inotilone diminished neutrophil infiltration into sites of inflammation, as did indomethacin (Indo). The anti-inflammatory activities of inotilone might be related to decrease the levels of MDA, iNOS, COX-2, NF-κB, and MMP-9 and increase the activities of CAT, SOD, and GPx in the paw edema through the suppression of TNF-α and NO. This study presents the potential utilization of inotilone, as a lead for the development of anti-inflammatory drugs. Public Library of Science 2012-05-08 /pmc/articles/PMC3348146/ /pubmed/22590514 http://dx.doi.org/10.1371/journal.pone.0035922 Text en Huang et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Huang, Guan-Jhong
Huang, Shyh-Shyun
Deng, Jeng-Shyan
Anti-Inflammatory Activities of Inotilone from Phellinus linteus through the Inhibition of MMP-9, NF-κB, and MAPK Activation In Vitro and In Vivo
title Anti-Inflammatory Activities of Inotilone from Phellinus linteus through the Inhibition of MMP-9, NF-κB, and MAPK Activation In Vitro and In Vivo
title_full Anti-Inflammatory Activities of Inotilone from Phellinus linteus through the Inhibition of MMP-9, NF-κB, and MAPK Activation In Vitro and In Vivo
title_fullStr Anti-Inflammatory Activities of Inotilone from Phellinus linteus through the Inhibition of MMP-9, NF-κB, and MAPK Activation In Vitro and In Vivo
title_full_unstemmed Anti-Inflammatory Activities of Inotilone from Phellinus linteus through the Inhibition of MMP-9, NF-κB, and MAPK Activation In Vitro and In Vivo
title_short Anti-Inflammatory Activities of Inotilone from Phellinus linteus through the Inhibition of MMP-9, NF-κB, and MAPK Activation In Vitro and In Vivo
title_sort anti-inflammatory activities of inotilone from phellinus linteus through the inhibition of mmp-9, nf-κb, and mapk activation in vitro and in vivo
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3348146/
https://www.ncbi.nlm.nih.gov/pubmed/22590514
http://dx.doi.org/10.1371/journal.pone.0035922
work_keys_str_mv AT huangguanjhong antiinflammatoryactivitiesofinotilonefromphellinuslinteusthroughtheinhibitionofmmp9nfkbandmapkactivationinvitroandinvivo
AT huangshyhshyun antiinflammatoryactivitiesofinotilonefromphellinuslinteusthroughtheinhibitionofmmp9nfkbandmapkactivationinvitroandinvivo
AT dengjengshyan antiinflammatoryactivitiesofinotilonefromphellinuslinteusthroughtheinhibitionofmmp9nfkbandmapkactivationinvitroandinvivo