Cargando…
dSir2 deficiency in the fatbody, but not muscles, affects systemic insulin signaling, fat mobilization and starvation survival in flies
Sir2 is an evolutionarily conserved NAD(+) dependent protein. Although, SIRT1 has been implicated to be a key regulator of fat and glucose metabolism in mammals, the role of Sir2 in regulating organismal physiology, in invertebrates, is unclear. Drosophila has been used to study evolutionarily conse...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3348481/ https://www.ncbi.nlm.nih.gov/pubmed/22411915 |
_version_ | 1782232391288356864 |
---|---|
author | Banerjee, Kushal Kr. Ayyub, Champakali Sengupta, Samudra Kolthur-Seetharam, Ullas |
author_facet | Banerjee, Kushal Kr. Ayyub, Champakali Sengupta, Samudra Kolthur-Seetharam, Ullas |
author_sort | Banerjee, Kushal Kr. |
collection | PubMed |
description | Sir2 is an evolutionarily conserved NAD(+) dependent protein. Although, SIRT1 has been implicated to be a key regulator of fat and glucose metabolism in mammals, the role of Sir2 in regulating organismal physiology, in invertebrates, is unclear. Drosophila has been used to study evolutionarily conserved nutrient sensing mechanisms, however, the molecular and metabolic pathways downstream to Sir2 (dSir2) are poorly understood. Here, we have knocked down endogenous dSir2 in a tissue specific manner using gene-switch gal4 drivers. Knockdown of dSir2 in the adult fatbody leads to deregulated fat metabolism involving altered expression of key metabolic genes. Our results highlight the role of dSir2 in mobilizing fat reserves and demonstrate that its functions in the adult fatbody are crucial for starvation survival. Further, dSir2 knockdown in the fatbody affects dilp5 (insulin-like-peptide) expression, and mediates systemic effects of insulin signaling. This report delineates the functions of dSir2 in the fatbody and muscles with systemic consequences on fat metabolism and insulin signaling. In conclusion, these findings highlight the central role that fatbody dSir2 plays in linking metabolism to organismal physiology and its importance for survival. |
format | Online Article Text |
id | pubmed-3348481 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-33484812012-05-14 dSir2 deficiency in the fatbody, but not muscles, affects systemic insulin signaling, fat mobilization and starvation survival in flies Banerjee, Kushal Kr. Ayyub, Champakali Sengupta, Samudra Kolthur-Seetharam, Ullas Aging (Albany NY) Research Paper Sir2 is an evolutionarily conserved NAD(+) dependent protein. Although, SIRT1 has been implicated to be a key regulator of fat and glucose metabolism in mammals, the role of Sir2 in regulating organismal physiology, in invertebrates, is unclear. Drosophila has been used to study evolutionarily conserved nutrient sensing mechanisms, however, the molecular and metabolic pathways downstream to Sir2 (dSir2) are poorly understood. Here, we have knocked down endogenous dSir2 in a tissue specific manner using gene-switch gal4 drivers. Knockdown of dSir2 in the adult fatbody leads to deregulated fat metabolism involving altered expression of key metabolic genes. Our results highlight the role of dSir2 in mobilizing fat reserves and demonstrate that its functions in the adult fatbody are crucial for starvation survival. Further, dSir2 knockdown in the fatbody affects dilp5 (insulin-like-peptide) expression, and mediates systemic effects of insulin signaling. This report delineates the functions of dSir2 in the fatbody and muscles with systemic consequences on fat metabolism and insulin signaling. In conclusion, these findings highlight the central role that fatbody dSir2 plays in linking metabolism to organismal physiology and its importance for survival. Impact Journals LLC 2012-03-10 /pmc/articles/PMC3348481/ /pubmed/22411915 Text en Copyright: © 2012 Banerjee et al. http://creativecommons.org/licenses/by/2.5/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited |
spellingShingle | Research Paper Banerjee, Kushal Kr. Ayyub, Champakali Sengupta, Samudra Kolthur-Seetharam, Ullas dSir2 deficiency in the fatbody, but not muscles, affects systemic insulin signaling, fat mobilization and starvation survival in flies |
title | dSir2 deficiency in the fatbody, but not muscles, affects systemic insulin signaling, fat mobilization and starvation survival in flies |
title_full | dSir2 deficiency in the fatbody, but not muscles, affects systemic insulin signaling, fat mobilization and starvation survival in flies |
title_fullStr | dSir2 deficiency in the fatbody, but not muscles, affects systemic insulin signaling, fat mobilization and starvation survival in flies |
title_full_unstemmed | dSir2 deficiency in the fatbody, but not muscles, affects systemic insulin signaling, fat mobilization and starvation survival in flies |
title_short | dSir2 deficiency in the fatbody, but not muscles, affects systemic insulin signaling, fat mobilization and starvation survival in flies |
title_sort | dsir2 deficiency in the fatbody, but not muscles, affects systemic insulin signaling, fat mobilization and starvation survival in flies |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3348481/ https://www.ncbi.nlm.nih.gov/pubmed/22411915 |
work_keys_str_mv | AT banerjeekushalkr dsir2deficiencyinthefatbodybutnotmusclesaffectssystemicinsulinsignalingfatmobilizationandstarvationsurvivalinflies AT ayyubchampakali dsir2deficiencyinthefatbodybutnotmusclesaffectssystemicinsulinsignalingfatmobilizationandstarvationsurvivalinflies AT senguptasamudra dsir2deficiencyinthefatbodybutnotmusclesaffectssystemicinsulinsignalingfatmobilizationandstarvationsurvivalinflies AT kolthurseetharamullas dsir2deficiencyinthefatbodybutnotmusclesaffectssystemicinsulinsignalingfatmobilizationandstarvationsurvivalinflies |