Cargando…
Predicted Relative Metabolomic Turnover (PRMT): determining metabolic turnover from a coastal marine metagenomic dataset
BACKGROUND: The world's oceans are home to a diverse array of microbial life whose metabolic activity helps to drive the earth's biogeochemical cycles. Metagenomic analysis has revolutionized our access to these communities, providing a system-scale perspective of microbial community inter...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3348665/ https://www.ncbi.nlm.nih.gov/pubmed/22587810 http://dx.doi.org/10.1186/2042-5783-1-4 |
_version_ | 1782232407861100544 |
---|---|
author | Larsen, Peter E Collart, Frank R Field, Dawn Meyer, Folker Keegan, Kevin P Henry, Christopher S McGrath, John Quinn, John Gilbert, Jack A |
author_facet | Larsen, Peter E Collart, Frank R Field, Dawn Meyer, Folker Keegan, Kevin P Henry, Christopher S McGrath, John Quinn, John Gilbert, Jack A |
author_sort | Larsen, Peter E |
collection | PubMed |
description | BACKGROUND: The world's oceans are home to a diverse array of microbial life whose metabolic activity helps to drive the earth's biogeochemical cycles. Metagenomic analysis has revolutionized our access to these communities, providing a system-scale perspective of microbial community interactions. However, while metagenome sequencing can provide useful estimates of the relative change in abundance of specific genes and taxa between environments or over time, this does not investigate the relative changes in the production or consumption of different metabolites. RESULTS: We propose a methodology, Predicted Relative Metabolic Turnover (PRMT) that defines and enables exploration of metabolite-space inferred from the metagenome. Our analysis of metagenomic data from a time-series study in the Western English Channel demonstrated considerable correlations between predicted relative metabolic turnover and seasonal changes in abundance of measured environmental parameters as well as with observed seasonal changes in bacterial population structure. CONCLUSIONS: The PRMT method was successfully applied to metagenomic data to explore the Western English Channel microbial metabalome to generate specific, biologically testable hypotheses. Generated hypotheses linked organic phosphate utilization to Gammaproteobactaria, Plantcomycetes, and Betaproteobacteria, chitin degradation to Actinomycetes, and potential small molecule biosynthesis pathways for Lentisphaerae, Chlamydiae, and Crenarchaeota. The PRMT method can be applied as a general tool for the analysis of additional metagenomic or transcriptomic datasets. |
format | Online Article Text |
id | pubmed-3348665 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-33486652012-05-10 Predicted Relative Metabolomic Turnover (PRMT): determining metabolic turnover from a coastal marine metagenomic dataset Larsen, Peter E Collart, Frank R Field, Dawn Meyer, Folker Keegan, Kevin P Henry, Christopher S McGrath, John Quinn, John Gilbert, Jack A Microb Inform Exp Research BACKGROUND: The world's oceans are home to a diverse array of microbial life whose metabolic activity helps to drive the earth's biogeochemical cycles. Metagenomic analysis has revolutionized our access to these communities, providing a system-scale perspective of microbial community interactions. However, while metagenome sequencing can provide useful estimates of the relative change in abundance of specific genes and taxa between environments or over time, this does not investigate the relative changes in the production or consumption of different metabolites. RESULTS: We propose a methodology, Predicted Relative Metabolic Turnover (PRMT) that defines and enables exploration of metabolite-space inferred from the metagenome. Our analysis of metagenomic data from a time-series study in the Western English Channel demonstrated considerable correlations between predicted relative metabolic turnover and seasonal changes in abundance of measured environmental parameters as well as with observed seasonal changes in bacterial population structure. CONCLUSIONS: The PRMT method was successfully applied to metagenomic data to explore the Western English Channel microbial metabalome to generate specific, biologically testable hypotheses. Generated hypotheses linked organic phosphate utilization to Gammaproteobactaria, Plantcomycetes, and Betaproteobacteria, chitin degradation to Actinomycetes, and potential small molecule biosynthesis pathways for Lentisphaerae, Chlamydiae, and Crenarchaeota. The PRMT method can be applied as a general tool for the analysis of additional metagenomic or transcriptomic datasets. BioMed Central 2011-06-14 /pmc/articles/PMC3348665/ /pubmed/22587810 http://dx.doi.org/10.1186/2042-5783-1-4 Text en Copyright ©2011 Larsen et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Larsen, Peter E Collart, Frank R Field, Dawn Meyer, Folker Keegan, Kevin P Henry, Christopher S McGrath, John Quinn, John Gilbert, Jack A Predicted Relative Metabolomic Turnover (PRMT): determining metabolic turnover from a coastal marine metagenomic dataset |
title | Predicted Relative Metabolomic Turnover (PRMT): determining metabolic turnover from a coastal marine metagenomic dataset |
title_full | Predicted Relative Metabolomic Turnover (PRMT): determining metabolic turnover from a coastal marine metagenomic dataset |
title_fullStr | Predicted Relative Metabolomic Turnover (PRMT): determining metabolic turnover from a coastal marine metagenomic dataset |
title_full_unstemmed | Predicted Relative Metabolomic Turnover (PRMT): determining metabolic turnover from a coastal marine metagenomic dataset |
title_short | Predicted Relative Metabolomic Turnover (PRMT): determining metabolic turnover from a coastal marine metagenomic dataset |
title_sort | predicted relative metabolomic turnover (prmt): determining metabolic turnover from a coastal marine metagenomic dataset |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3348665/ https://www.ncbi.nlm.nih.gov/pubmed/22587810 http://dx.doi.org/10.1186/2042-5783-1-4 |
work_keys_str_mv | AT larsenpetere predictedrelativemetabolomicturnoverprmtdeterminingmetabolicturnoverfromacoastalmarinemetagenomicdataset AT collartfrankr predictedrelativemetabolomicturnoverprmtdeterminingmetabolicturnoverfromacoastalmarinemetagenomicdataset AT fielddawn predictedrelativemetabolomicturnoverprmtdeterminingmetabolicturnoverfromacoastalmarinemetagenomicdataset AT meyerfolker predictedrelativemetabolomicturnoverprmtdeterminingmetabolicturnoverfromacoastalmarinemetagenomicdataset AT keegankevinp predictedrelativemetabolomicturnoverprmtdeterminingmetabolicturnoverfromacoastalmarinemetagenomicdataset AT henrychristophers predictedrelativemetabolomicturnoverprmtdeterminingmetabolicturnoverfromacoastalmarinemetagenomicdataset AT mcgrathjohn predictedrelativemetabolomicturnoverprmtdeterminingmetabolicturnoverfromacoastalmarinemetagenomicdataset AT quinnjohn predictedrelativemetabolomicturnoverprmtdeterminingmetabolicturnoverfromacoastalmarinemetagenomicdataset AT gilbertjacka predictedrelativemetabolomicturnoverprmtdeterminingmetabolicturnoverfromacoastalmarinemetagenomicdataset |