Cargando…

Predicted Relative Metabolomic Turnover (PRMT): determining metabolic turnover from a coastal marine metagenomic dataset

BACKGROUND: The world's oceans are home to a diverse array of microbial life whose metabolic activity helps to drive the earth's biogeochemical cycles. Metagenomic analysis has revolutionized our access to these communities, providing a system-scale perspective of microbial community inter...

Descripción completa

Detalles Bibliográficos
Autores principales: Larsen, Peter E, Collart, Frank R, Field, Dawn, Meyer, Folker, Keegan, Kevin P, Henry, Christopher S, McGrath, John, Quinn, John, Gilbert, Jack A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3348665/
https://www.ncbi.nlm.nih.gov/pubmed/22587810
http://dx.doi.org/10.1186/2042-5783-1-4
_version_ 1782232407861100544
author Larsen, Peter E
Collart, Frank R
Field, Dawn
Meyer, Folker
Keegan, Kevin P
Henry, Christopher S
McGrath, John
Quinn, John
Gilbert, Jack A
author_facet Larsen, Peter E
Collart, Frank R
Field, Dawn
Meyer, Folker
Keegan, Kevin P
Henry, Christopher S
McGrath, John
Quinn, John
Gilbert, Jack A
author_sort Larsen, Peter E
collection PubMed
description BACKGROUND: The world's oceans are home to a diverse array of microbial life whose metabolic activity helps to drive the earth's biogeochemical cycles. Metagenomic analysis has revolutionized our access to these communities, providing a system-scale perspective of microbial community interactions. However, while metagenome sequencing can provide useful estimates of the relative change in abundance of specific genes and taxa between environments or over time, this does not investigate the relative changes in the production or consumption of different metabolites. RESULTS: We propose a methodology, Predicted Relative Metabolic Turnover (PRMT) that defines and enables exploration of metabolite-space inferred from the metagenome. Our analysis of metagenomic data from a time-series study in the Western English Channel demonstrated considerable correlations between predicted relative metabolic turnover and seasonal changes in abundance of measured environmental parameters as well as with observed seasonal changes in bacterial population structure. CONCLUSIONS: The PRMT method was successfully applied to metagenomic data to explore the Western English Channel microbial metabalome to generate specific, biologically testable hypotheses. Generated hypotheses linked organic phosphate utilization to Gammaproteobactaria, Plantcomycetes, and Betaproteobacteria, chitin degradation to Actinomycetes, and potential small molecule biosynthesis pathways for Lentisphaerae, Chlamydiae, and Crenarchaeota. The PRMT method can be applied as a general tool for the analysis of additional metagenomic or transcriptomic datasets.
format Online
Article
Text
id pubmed-3348665
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-33486652012-05-10 Predicted Relative Metabolomic Turnover (PRMT): determining metabolic turnover from a coastal marine metagenomic dataset Larsen, Peter E Collart, Frank R Field, Dawn Meyer, Folker Keegan, Kevin P Henry, Christopher S McGrath, John Quinn, John Gilbert, Jack A Microb Inform Exp Research BACKGROUND: The world's oceans are home to a diverse array of microbial life whose metabolic activity helps to drive the earth's biogeochemical cycles. Metagenomic analysis has revolutionized our access to these communities, providing a system-scale perspective of microbial community interactions. However, while metagenome sequencing can provide useful estimates of the relative change in abundance of specific genes and taxa between environments or over time, this does not investigate the relative changes in the production or consumption of different metabolites. RESULTS: We propose a methodology, Predicted Relative Metabolic Turnover (PRMT) that defines and enables exploration of metabolite-space inferred from the metagenome. Our analysis of metagenomic data from a time-series study in the Western English Channel demonstrated considerable correlations between predicted relative metabolic turnover and seasonal changes in abundance of measured environmental parameters as well as with observed seasonal changes in bacterial population structure. CONCLUSIONS: The PRMT method was successfully applied to metagenomic data to explore the Western English Channel microbial metabalome to generate specific, biologically testable hypotheses. Generated hypotheses linked organic phosphate utilization to Gammaproteobactaria, Plantcomycetes, and Betaproteobacteria, chitin degradation to Actinomycetes, and potential small molecule biosynthesis pathways for Lentisphaerae, Chlamydiae, and Crenarchaeota. The PRMT method can be applied as a general tool for the analysis of additional metagenomic or transcriptomic datasets. BioMed Central 2011-06-14 /pmc/articles/PMC3348665/ /pubmed/22587810 http://dx.doi.org/10.1186/2042-5783-1-4 Text en Copyright ©2011 Larsen et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Larsen, Peter E
Collart, Frank R
Field, Dawn
Meyer, Folker
Keegan, Kevin P
Henry, Christopher S
McGrath, John
Quinn, John
Gilbert, Jack A
Predicted Relative Metabolomic Turnover (PRMT): determining metabolic turnover from a coastal marine metagenomic dataset
title Predicted Relative Metabolomic Turnover (PRMT): determining metabolic turnover from a coastal marine metagenomic dataset
title_full Predicted Relative Metabolomic Turnover (PRMT): determining metabolic turnover from a coastal marine metagenomic dataset
title_fullStr Predicted Relative Metabolomic Turnover (PRMT): determining metabolic turnover from a coastal marine metagenomic dataset
title_full_unstemmed Predicted Relative Metabolomic Turnover (PRMT): determining metabolic turnover from a coastal marine metagenomic dataset
title_short Predicted Relative Metabolomic Turnover (PRMT): determining metabolic turnover from a coastal marine metagenomic dataset
title_sort predicted relative metabolomic turnover (prmt): determining metabolic turnover from a coastal marine metagenomic dataset
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3348665/
https://www.ncbi.nlm.nih.gov/pubmed/22587810
http://dx.doi.org/10.1186/2042-5783-1-4
work_keys_str_mv AT larsenpetere predictedrelativemetabolomicturnoverprmtdeterminingmetabolicturnoverfromacoastalmarinemetagenomicdataset
AT collartfrankr predictedrelativemetabolomicturnoverprmtdeterminingmetabolicturnoverfromacoastalmarinemetagenomicdataset
AT fielddawn predictedrelativemetabolomicturnoverprmtdeterminingmetabolicturnoverfromacoastalmarinemetagenomicdataset
AT meyerfolker predictedrelativemetabolomicturnoverprmtdeterminingmetabolicturnoverfromacoastalmarinemetagenomicdataset
AT keegankevinp predictedrelativemetabolomicturnoverprmtdeterminingmetabolicturnoverfromacoastalmarinemetagenomicdataset
AT henrychristophers predictedrelativemetabolomicturnoverprmtdeterminingmetabolicturnoverfromacoastalmarinemetagenomicdataset
AT mcgrathjohn predictedrelativemetabolomicturnoverprmtdeterminingmetabolicturnoverfromacoastalmarinemetagenomicdataset
AT quinnjohn predictedrelativemetabolomicturnoverprmtdeterminingmetabolicturnoverfromacoastalmarinemetagenomicdataset
AT gilbertjacka predictedrelativemetabolomicturnoverprmtdeterminingmetabolicturnoverfromacoastalmarinemetagenomicdataset