Cargando…

On the Capability of Artificial Neural Networks to Compensate Nonlinearities in Wavelength Sensing

An intelligent sensor for light wavelength readout, suitable for visible range optical applications, has been developed. Using buried triple photo-junction as basic pixel sensing element in combination with artificial neural network (ANN), the wavelength readout with a full-scale error of less than...

Descripción completa

Detalles Bibliográficos
Autores principales: Hafiane, Mohamed Lamine, Dibi, Zohir, Manck, Otto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3348813/
https://www.ncbi.nlm.nih.gov/pubmed/22574051
http://dx.doi.org/10.3390/s90402884
Descripción
Sumario:An intelligent sensor for light wavelength readout, suitable for visible range optical applications, has been developed. Using buried triple photo-junction as basic pixel sensing element in combination with artificial neural network (ANN), the wavelength readout with a full-scale error of less than 1.5% over the range of 400 to 780 nm can be achieved. Through this work, the applicability of the ANN approach in optical sensing is investigated and compared with conventional methods, and a good compromise between accuracy and the possibility for on-chip implementation was thus found. Indeed, this technique can serve different purposes and may replace conventional methods.