Cargando…
Allelic Expression Changes in Medaka (Oryzias latipes) Hybrids between Inbred Strains Derived from Genetically Distant Populations
Variations in allele expressions between genetically distant populations are one of the most important factors which affects their morphological and physiological variations. These variations are caused by natural mutations accumulated in their habitats. It has been reported that allelic expression...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3349633/ https://www.ncbi.nlm.nih.gov/pubmed/22590630 http://dx.doi.org/10.1371/journal.pone.0036875 |
Sumario: | Variations in allele expressions between genetically distant populations are one of the most important factors which affects their morphological and physiological variations. These variations are caused by natural mutations accumulated in their habitats. It has been reported that allelic expression differences in the hybrids of genetically distant populations are different from parental strains. In that case, there is a possibility that allelic expression changes lead to novel phenotypes in hybrids. Based on genomic information of the genetically distant populations, quantification and comparison of allelic expression changes make importance of regulatory sequences (cis-acting factors) or upstream regulatory factors (trans-acting modulators) for these changes clearer. In this study, we focused on two Medaka inbred strains, Hd-rR and HNI, derived from genetically distant populations and their hybrids. They are highly polymorphic and we can utilize whole-genome information. To analyze allelic expression changes, we established a method to quantify and compare allele-specific expressions of 11 genes between the parental strains and their reciprocal hybrids. In intestines of reciprocal hybrids, allelic expression was either similar or different in comparison with the parental strains. Total expressions in Hd-rR and HNI were tissue-dependent in the case of HPRT1, with high up-regulation of Hd-rR allele expression in liver. The proportion of genes with differential allelic expression in Medaka hybrids seems to be the same as that in other animals, despite the high SNP rate in the genomes of the two inbred strains. It is suggested that each tissue of the strain difference in trans-acting modulators is more important than polymorphisms in cis-regulatory sequences in producing the allelic expression changes in reciprocal hybrids. |
---|