Cargando…

PtdIns (3,4,5) P3 Recruitment of Myo10 Is Essential for Axon Development

Myosin X (Myo10) with pleckstrin homology (PH) domains is a motor protein acting in filopodium initiation and extension. However, its potential role has not been fully understood, especially in neuronal development. In the present study the preferential accumulation of Myo10 in axon tips has been re...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Huali, Wang, Nannan, Ju, Xingda, Yang, Yan, Sun, Dong, Lai, Mingming, Cui, Lei, Sheikh, Muhammad Abid, Zhang, Jianhua, Wang, Xingzhi, Zhu, Xiaojuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3349655/
https://www.ncbi.nlm.nih.gov/pubmed/22590642
http://dx.doi.org/10.1371/journal.pone.0036988
Descripción
Sumario:Myosin X (Myo10) with pleckstrin homology (PH) domains is a motor protein acting in filopodium initiation and extension. However, its potential role has not been fully understood, especially in neuronal development. In the present study the preferential accumulation of Myo10 in axon tips has been revealed in primary culture of hippocampal neurons with the aid of immunofluorescence from anti-Myo10 antibody in combination with anti-Tuj1 antibody as specific marker. Knocking down Myo10 gene transcription impaired outgrowth of axon with loss of Tau-1-positive phenotype. Interestingly, inhibition of actin polymerization by cytochalasin D rescued the defect of axon outgrowth. Furthermore, ectopic expression of Myo10 with enhanced green fluorescence protein (EGFP) labeled Myo10 mutants induced multiple axon-like neurites in a motor-independent way. Mechanism studies demonstrated that the recruitment of Myo10 through its PH domain to phosphatidylinositol (3,4,5)-trisphosphate (PtdIns (3,4,5) P3) was essential for axon formation. In addition, in vivo studies confirmed that Myo10 was required for neuronal morphological transition during radial neuronal migration in the developmental neocortex.