Cargando…

Complete genome sequence, lifestyle, and multi-drug resistance of the human pathogen Corynebacterium resistens DSM 45100 isolated from blood samples of a leukemia patient

BACKGROUND: Corynebacterium resistens was initially recovered from human infections and recognized as a new coryneform species that is highly resistant to antimicrobial agents. Bacteremia associated with this organism in immunocompromised patients was rapidly fatal as standard minocycline therapies...

Descripción completa

Detalles Bibliográficos
Autores principales: Schröder, Jasmin, Maus, Irena, Meyer, Katja, Wördemann, Stephanie, Blom, Jochen, Jaenicke, Sebastian, Schneider, Jessica, Trost, Eva, Tauch, Andreas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3350403/
https://www.ncbi.nlm.nih.gov/pubmed/22524407
http://dx.doi.org/10.1186/1471-2164-13-141
_version_ 1782232655818915840
author Schröder, Jasmin
Maus, Irena
Meyer, Katja
Wördemann, Stephanie
Blom, Jochen
Jaenicke, Sebastian
Schneider, Jessica
Trost, Eva
Tauch, Andreas
author_facet Schröder, Jasmin
Maus, Irena
Meyer, Katja
Wördemann, Stephanie
Blom, Jochen
Jaenicke, Sebastian
Schneider, Jessica
Trost, Eva
Tauch, Andreas
author_sort Schröder, Jasmin
collection PubMed
description BACKGROUND: Corynebacterium resistens was initially recovered from human infections and recognized as a new coryneform species that is highly resistant to antimicrobial agents. Bacteremia associated with this organism in immunocompromised patients was rapidly fatal as standard minocycline therapies failed. C. resistens DSM 45100 was isolated from a blood culture of samples taken from a patient with acute myelocytic leukemia. The complete genome sequence of C. resistens DSM 45100 was determined by pyrosequencing to identify genes contributing to multi-drug resistance, virulence, and the lipophilic lifestyle of this newly described human pathogen. RESULTS: The genome of C. resistens DSM 45100 consists of a circular chromosome of 2,601,311 bp in size and the 28,312-bp plasmid pJA144188. Metabolic analysis showed that the genome of C. resistens DSM 45100 lacks genes for typical sugar uptake systems, anaplerotic functions, and a fatty acid synthase, explaining the strict lipophilic lifestyle of this species. The genome encodes a broad spectrum of enzymes ensuring the availability of exogenous fatty acids for growth, including predicted virulence factors that probably contribute to fatty acid metabolism by damaging host tissue. C. resistens DSM 45100 is able to use external L-histidine as a combined carbon and nitrogen source, presumably as a result of adaptation to the hitherto unknown habitat on the human skin. Plasmid pJA144188 harbors several genes contributing to antibiotic resistance of C. resistens DSM 45100, including a tetracycline resistance region of the Tet W type known from Lactobacillus reuteri and Streptococcus suis. The tet(W) gene of pJA144188 was cloned in Corynebacterium glutamicum and was shown to confer high levels of resistance to tetracycline, doxycycline, and minocycline in vitro. CONCLUSIONS: The detected gene repertoire of C. resistens DSM 45100 provides insights into the lipophilic lifestyle and virulence functions of this newly recognized pathogen. Plasmid pJA144188 revealed a modular architecture of gene regions that contribute to the multi-drug resistance of C. resistens DSM 45100. The tet(W) gene encoding a ribosomal protection protein is reported here for the first time in corynebacteria. Cloning of the tet(W) gene mediated resistance to second generation tetracyclines in C. glutamicum, indicating that it might be responsible for the failure of minocycline therapies in patients with C. resistens bacteremia.
format Online
Article
Text
id pubmed-3350403
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-33504032012-05-12 Complete genome sequence, lifestyle, and multi-drug resistance of the human pathogen Corynebacterium resistens DSM 45100 isolated from blood samples of a leukemia patient Schröder, Jasmin Maus, Irena Meyer, Katja Wördemann, Stephanie Blom, Jochen Jaenicke, Sebastian Schneider, Jessica Trost, Eva Tauch, Andreas BMC Genomics Research Article BACKGROUND: Corynebacterium resistens was initially recovered from human infections and recognized as a new coryneform species that is highly resistant to antimicrobial agents. Bacteremia associated with this organism in immunocompromised patients was rapidly fatal as standard minocycline therapies failed. C. resistens DSM 45100 was isolated from a blood culture of samples taken from a patient with acute myelocytic leukemia. The complete genome sequence of C. resistens DSM 45100 was determined by pyrosequencing to identify genes contributing to multi-drug resistance, virulence, and the lipophilic lifestyle of this newly described human pathogen. RESULTS: The genome of C. resistens DSM 45100 consists of a circular chromosome of 2,601,311 bp in size and the 28,312-bp plasmid pJA144188. Metabolic analysis showed that the genome of C. resistens DSM 45100 lacks genes for typical sugar uptake systems, anaplerotic functions, and a fatty acid synthase, explaining the strict lipophilic lifestyle of this species. The genome encodes a broad spectrum of enzymes ensuring the availability of exogenous fatty acids for growth, including predicted virulence factors that probably contribute to fatty acid metabolism by damaging host tissue. C. resistens DSM 45100 is able to use external L-histidine as a combined carbon and nitrogen source, presumably as a result of adaptation to the hitherto unknown habitat on the human skin. Plasmid pJA144188 harbors several genes contributing to antibiotic resistance of C. resistens DSM 45100, including a tetracycline resistance region of the Tet W type known from Lactobacillus reuteri and Streptococcus suis. The tet(W) gene of pJA144188 was cloned in Corynebacterium glutamicum and was shown to confer high levels of resistance to tetracycline, doxycycline, and minocycline in vitro. CONCLUSIONS: The detected gene repertoire of C. resistens DSM 45100 provides insights into the lipophilic lifestyle and virulence functions of this newly recognized pathogen. Plasmid pJA144188 revealed a modular architecture of gene regions that contribute to the multi-drug resistance of C. resistens DSM 45100. The tet(W) gene encoding a ribosomal protection protein is reported here for the first time in corynebacteria. Cloning of the tet(W) gene mediated resistance to second generation tetracyclines in C. glutamicum, indicating that it might be responsible for the failure of minocycline therapies in patients with C. resistens bacteremia. BioMed Central 2012-04-23 /pmc/articles/PMC3350403/ /pubmed/22524407 http://dx.doi.org/10.1186/1471-2164-13-141 Text en Copyright ©2012 Schröder et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Schröder, Jasmin
Maus, Irena
Meyer, Katja
Wördemann, Stephanie
Blom, Jochen
Jaenicke, Sebastian
Schneider, Jessica
Trost, Eva
Tauch, Andreas
Complete genome sequence, lifestyle, and multi-drug resistance of the human pathogen Corynebacterium resistens DSM 45100 isolated from blood samples of a leukemia patient
title Complete genome sequence, lifestyle, and multi-drug resistance of the human pathogen Corynebacterium resistens DSM 45100 isolated from blood samples of a leukemia patient
title_full Complete genome sequence, lifestyle, and multi-drug resistance of the human pathogen Corynebacterium resistens DSM 45100 isolated from blood samples of a leukemia patient
title_fullStr Complete genome sequence, lifestyle, and multi-drug resistance of the human pathogen Corynebacterium resistens DSM 45100 isolated from blood samples of a leukemia patient
title_full_unstemmed Complete genome sequence, lifestyle, and multi-drug resistance of the human pathogen Corynebacterium resistens DSM 45100 isolated from blood samples of a leukemia patient
title_short Complete genome sequence, lifestyle, and multi-drug resistance of the human pathogen Corynebacterium resistens DSM 45100 isolated from blood samples of a leukemia patient
title_sort complete genome sequence, lifestyle, and multi-drug resistance of the human pathogen corynebacterium resistens dsm 45100 isolated from blood samples of a leukemia patient
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3350403/
https://www.ncbi.nlm.nih.gov/pubmed/22524407
http://dx.doi.org/10.1186/1471-2164-13-141
work_keys_str_mv AT schroderjasmin completegenomesequencelifestyleandmultidrugresistanceofthehumanpathogencorynebacteriumresistensdsm45100isolatedfrombloodsamplesofaleukemiapatient
AT mausirena completegenomesequencelifestyleandmultidrugresistanceofthehumanpathogencorynebacteriumresistensdsm45100isolatedfrombloodsamplesofaleukemiapatient
AT meyerkatja completegenomesequencelifestyleandmultidrugresistanceofthehumanpathogencorynebacteriumresistensdsm45100isolatedfrombloodsamplesofaleukemiapatient
AT wordemannstephanie completegenomesequencelifestyleandmultidrugresistanceofthehumanpathogencorynebacteriumresistensdsm45100isolatedfrombloodsamplesofaleukemiapatient
AT blomjochen completegenomesequencelifestyleandmultidrugresistanceofthehumanpathogencorynebacteriumresistensdsm45100isolatedfrombloodsamplesofaleukemiapatient
AT jaenickesebastian completegenomesequencelifestyleandmultidrugresistanceofthehumanpathogencorynebacteriumresistensdsm45100isolatedfrombloodsamplesofaleukemiapatient
AT schneiderjessica completegenomesequencelifestyleandmultidrugresistanceofthehumanpathogencorynebacteriumresistensdsm45100isolatedfrombloodsamplesofaleukemiapatient
AT trosteva completegenomesequencelifestyleandmultidrugresistanceofthehumanpathogencorynebacteriumresistensdsm45100isolatedfrombloodsamplesofaleukemiapatient
AT tauchandreas completegenomesequencelifestyleandmultidrugresistanceofthehumanpathogencorynebacteriumresistensdsm45100isolatedfrombloodsamplesofaleukemiapatient