Cargando…

Stem Cells as In Vitro Model of Parkinson's Disease

Progress in understanding neurodegenerative cell biology in Parkinson's disease (PD) has been hampered by a lack of predictive and relevant cellular models. In addition, the lack of an adequate in vitro human neuron cell-based model has been an obstacle for the uncover of new drugs for treating...

Descripción completa

Detalles Bibliográficos
Autores principales: Martínez-Morales, Patricia L., Liste, Isabel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3350852/
https://www.ncbi.nlm.nih.gov/pubmed/22619684
http://dx.doi.org/10.1155/2012/980941
Descripción
Sumario:Progress in understanding neurodegenerative cell biology in Parkinson's disease (PD) has been hampered by a lack of predictive and relevant cellular models. In addition, the lack of an adequate in vitro human neuron cell-based model has been an obstacle for the uncover of new drugs for treating PD. The ability to generate induced pluripotent stem cells (iPSCs) from PD patients and a refined capacity to differentiate these iPSCs into DA neurons, the relevant disease cell type, promises a new paradigm in drug development that positions human disease pathophysiology at the core of preclinical drug discovery. Disease models derived from iPSC that manifest cellular disease phenotypes have been established for several monogenic diseases, but iPSC can likewise be used for phenotype-based drug screens in complex diseases for which the underlying genetic mechanism is unknown. Here, we highlight recent advances as well as limitations in the use of iPSC technology for modelling PD “in a dish” and for testing compounds against human disease phenotypes in vitro. We discuss how iPSCs are being exploited to illuminate disease pathophysiology, identify novel drug targets, and enhance the probability of clinical success of new drugs.