Cargando…
Kinetics and mechanism of G-quadruplex formation and conformational switch in a G-quadruplex of PS2.M induced by Pb(2+)
DNA sequences with guanine repeats can form G-quartets that adopt G-quadruplex structures in the presence of specific metal ions. Using circular dichroism (CD) and ultraviolet-visible (UV–Vis) spectroscopy, we determined the spectral characteristics and the overall conformation of a G-quadruplex of...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3351173/ https://www.ncbi.nlm.nih.gov/pubmed/22241774 http://dx.doi.org/10.1093/nar/gkr1310 |
Sumario: | DNA sequences with guanine repeats can form G-quartets that adopt G-quadruplex structures in the presence of specific metal ions. Using circular dichroism (CD) and ultraviolet-visible (UV–Vis) spectroscopy, we determined the spectral characteristics and the overall conformation of a G-quadruplex of PS2.M with an oligonucleotide sequence, d(GTG(3)TAG(3)CG(3)TTG(2)). UV-melting curves demonstrate that the Pb(2+)-induced G-quadruplex formed unimolecularly and the highest melting temperature (T(m)) is 72°C. The analysis of the UV titration results reveals that the binding stoichiometry of Pb(2+) ions to PS2.M is two, suggesting that the Pb(2+) ions coordinate between adjacent G-quartets. Binding of ions to G-rich DNA is a complex multiple-pathway process, which is strongly affected by the type of the cations. Kinetic studies suggest that the Pb(2+)-induced folding of PS2.M to G-quadruplex probably proceeds through a three-step pathway involving two intermediates. Structural transition occurs after adding Pb(NO(3))(2) to the Na(+)- or K(+)-induced G-quadruplexes, which may be attributed to the replacement of Na(+) or K(+) by Pb(2+) ions and the generation of a more compact Pb(2+)–PS2.M structure. Comparison of the relaxation times shows that the Na(+)→Pb(2+) exchange is more facile than the K(+)→Pb(2+) exchange process, and the mechanisms for these processes are proposed. |
---|