Cargando…
The seven-transmembrane receptor Gpr1 governs processes relevant for the antagonistic interaction of Trichoderma atroviride with its host
Mycoparasitic Trichoderma species are applied as biocontrol agents in agriculture to guard plants against fungal diseases. During mycoparasitism, Trichoderma directly interacts with phytopathogenic fungi, preceded by a specific recognition of the host and resulting in its disarming and killing. In v...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society for General Microbiology
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3352357/ https://www.ncbi.nlm.nih.gov/pubmed/22075023 http://dx.doi.org/10.1099/mic.0.052035-0 |
Sumario: | Mycoparasitic Trichoderma species are applied as biocontrol agents in agriculture to guard plants against fungal diseases. During mycoparasitism, Trichoderma directly interacts with phytopathogenic fungi, preceded by a specific recognition of the host and resulting in its disarming and killing. In various fungal pathogens, including mycoparasites, signalling via heterotrimeric G proteins plays a major role in regulating pathogenicity-related functions. However, the corresponding receptors involved in the recognition of host-derived signals are largely unknown. Functional characterization of Trichoderma atroviride Gpr1 revealed a prominent role of this seven-transmembrane protein of the cAMP-receptor-like family of fungal G-protein-coupled receptors in the antagonistic interaction with the host fungus and governing of mycoparasitism-related processes. Silencing of gpr1 led to an avirulent phenotype accompanied by an inability to attach to host hyphae. Furthermore, gpr1-silenced transformants were unable to respond to the presence of living host fungi with the expression of chitinase- and protease-encoding genes. Addition of exogenous cAMP was able to restore host attachment in gpr1-silenced transformants but could not restore mycoparasitic overgrowth. A search for downstream targets of the signalling pathway(s) involving Gpr1 resulted in the isolation of genes encoding e.g. a member of the cyclin-like superfamily and a small secreted cysteine-rich protein. Although silencing of gpr1 caused defects similar to those of mutants lacking the Tga3 Gα protein, no direct interaction between Gpr1 and Tga3 was observed in a split-ubiquitin two-hybrid assay. |
---|