Cargando…

Small-scale biocomplexity in coastal Atlantic cod supporting a Darwinian perspective on fisheries management

Harvesting of marine resources raises concerns about how to identify and preserve biocomplexity, including the diversity of life histories found within and among wild populations of a species. In order to fully accomplish this, there is a need to elucidate the underlying causes of phenotypic variati...

Descripción completa

Detalles Bibliográficos
Autores principales: Olsen, Esben Moland, Knutsen, Halvor, Gjøsæter, Jakob, Jorde, Per Erik, Knutsen, Jan Atle, Stenseth, Nils Chr
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3352383/
https://www.ncbi.nlm.nih.gov/pubmed/25567733
http://dx.doi.org/10.1111/j.1752-4571.2008.00024.x
Descripción
Sumario:Harvesting of marine resources raises concerns about how to identify and preserve biocomplexity, including the diversity of life histories found within and among wild populations of a species. In order to fully accomplish this, there is a need to elucidate the underlying causes of phenotypic variation, and how this variation responds to environmental changes. In general, both evolutionary (genetic) and nonevolutionary (plastic) responses may occur. Plastic responses to environmental change are expected to shift the phenotype along a reaction norm, while an evolutionary response is expected to shift the reaction norm itself. Here, we assess the maturation patterns of coastal Atlantic cod (Gadus morhua) in Skagerrak, where studies using neutral markers have revealed genetically differentiated populations of this harvested fish within tens of kilometres of coastline. Our results suggest that physiological state prior to the spawning season, as well as juvenile growth, both influence the probability of completing sexual maturation at a given age. Furthermore, our results point towards a spatial structuring of this plasticity (i.e. the maturation reaction norms) comparable with population connectivity inferred from neutral markers. We argue that such fine-scale biocomplexity calls for a Darwinian approach to fisheries management.