Cargando…

The role of cholesterol-sphingomyelin membrane nanodomains in the stability of intercellular membrane nanotubes

Intercellular membrane nanotubes (ICNs) are highly curved tubular structures that connect neighboring cells. The stability of these structures depends on the inner cytoskeleton and the cell membrane composition. Yet, due to the difficulty in the extraction of ICNs, the cell membrane composition rema...

Descripción completa

Detalles Bibliográficos
Autores principales: Lokar, Maruša, Kabaso, Doron, Resnik, Nataša, Sepčić, Kristina, Kralj-Iglič, Veronika, Veranič, Peter, Zorec, Robert, Iglič, Aleš
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3352693/
https://www.ncbi.nlm.nih.gov/pubmed/22605937
http://dx.doi.org/10.2147/IJN.S28723
_version_ 1782232959020957696
author Lokar, Maruša
Kabaso, Doron
Resnik, Nataša
Sepčić, Kristina
Kralj-Iglič, Veronika
Veranič, Peter
Zorec, Robert
Iglič, Aleš
author_facet Lokar, Maruša
Kabaso, Doron
Resnik, Nataša
Sepčić, Kristina
Kralj-Iglič, Veronika
Veranič, Peter
Zorec, Robert
Iglič, Aleš
author_sort Lokar, Maruša
collection PubMed
description Intercellular membrane nanotubes (ICNs) are highly curved tubular structures that connect neighboring cells. The stability of these structures depends on the inner cytoskeleton and the cell membrane composition. Yet, due to the difficulty in the extraction of ICNs, the cell membrane composition remains elusive. In the present study, a raft marker, ostreolysin, revealed the enrichment of cholesterol-sphingomyelin membrane nanodomains along ICNs in a T24 (malignant) urothelial cancer cell line. Cholesterol depletion, due to the addition of methyl-β-cyclodextrin, caused the dispersion of cholesterol-sphingomyelin membrane nanodomains and the retraction of ICNs. The depletion of cholesterol also led to cytoskeleton reorganization and to formation of actin stress fibers. Live cell imaging data revealed the possible functional coupling between the change from polygonal to spherical shape, cell separation, and the disconnection of ICNs. The ICN was modeled as an axisymmetric tubular structure, enabling us to investigate the effects of cholesterol content on the ICN curvature. The removal of cholesterol was predicted to reduce the positive spontaneous curvature of the remaining membrane components, increasing their curvature mismatch with the tube curvature. The mechanisms by which the increased curvature mismatch could contribute to the disconnection of ICNs are discussed.
format Online
Article
Text
id pubmed-3352693
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Dove Medical Press
record_format MEDLINE/PubMed
spelling pubmed-33526932012-05-17 The role of cholesterol-sphingomyelin membrane nanodomains in the stability of intercellular membrane nanotubes Lokar, Maruša Kabaso, Doron Resnik, Nataša Sepčić, Kristina Kralj-Iglič, Veronika Veranič, Peter Zorec, Robert Iglič, Aleš Int J Nanomedicine Original Research Intercellular membrane nanotubes (ICNs) are highly curved tubular structures that connect neighboring cells. The stability of these structures depends on the inner cytoskeleton and the cell membrane composition. Yet, due to the difficulty in the extraction of ICNs, the cell membrane composition remains elusive. In the present study, a raft marker, ostreolysin, revealed the enrichment of cholesterol-sphingomyelin membrane nanodomains along ICNs in a T24 (malignant) urothelial cancer cell line. Cholesterol depletion, due to the addition of methyl-β-cyclodextrin, caused the dispersion of cholesterol-sphingomyelin membrane nanodomains and the retraction of ICNs. The depletion of cholesterol also led to cytoskeleton reorganization and to formation of actin stress fibers. Live cell imaging data revealed the possible functional coupling between the change from polygonal to spherical shape, cell separation, and the disconnection of ICNs. The ICN was modeled as an axisymmetric tubular structure, enabling us to investigate the effects of cholesterol content on the ICN curvature. The removal of cholesterol was predicted to reduce the positive spontaneous curvature of the remaining membrane components, increasing their curvature mismatch with the tube curvature. The mechanisms by which the increased curvature mismatch could contribute to the disconnection of ICNs are discussed. Dove Medical Press 2012 2012-04-10 /pmc/articles/PMC3352693/ /pubmed/22605937 http://dx.doi.org/10.2147/IJN.S28723 Text en © 2012 Lokar et al, publisher and licensee Dove Medical Press Ltd. This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited.
spellingShingle Original Research
Lokar, Maruša
Kabaso, Doron
Resnik, Nataša
Sepčić, Kristina
Kralj-Iglič, Veronika
Veranič, Peter
Zorec, Robert
Iglič, Aleš
The role of cholesterol-sphingomyelin membrane nanodomains in the stability of intercellular membrane nanotubes
title The role of cholesterol-sphingomyelin membrane nanodomains in the stability of intercellular membrane nanotubes
title_full The role of cholesterol-sphingomyelin membrane nanodomains in the stability of intercellular membrane nanotubes
title_fullStr The role of cholesterol-sphingomyelin membrane nanodomains in the stability of intercellular membrane nanotubes
title_full_unstemmed The role of cholesterol-sphingomyelin membrane nanodomains in the stability of intercellular membrane nanotubes
title_short The role of cholesterol-sphingomyelin membrane nanodomains in the stability of intercellular membrane nanotubes
title_sort role of cholesterol-sphingomyelin membrane nanodomains in the stability of intercellular membrane nanotubes
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3352693/
https://www.ncbi.nlm.nih.gov/pubmed/22605937
http://dx.doi.org/10.2147/IJN.S28723
work_keys_str_mv AT lokarmarusa theroleofcholesterolsphingomyelinmembranenanodomainsinthestabilityofintercellularmembranenanotubes
AT kabasodoron theroleofcholesterolsphingomyelinmembranenanodomainsinthestabilityofintercellularmembranenanotubes
AT resniknatasa theroleofcholesterolsphingomyelinmembranenanodomainsinthestabilityofintercellularmembranenanotubes
AT sepcickristina theroleofcholesterolsphingomyelinmembranenanodomainsinthestabilityofintercellularmembranenanotubes
AT kraljiglicveronika theroleofcholesterolsphingomyelinmembranenanodomainsinthestabilityofintercellularmembranenanotubes
AT veranicpeter theroleofcholesterolsphingomyelinmembranenanodomainsinthestabilityofintercellularmembranenanotubes
AT zorecrobert theroleofcholesterolsphingomyelinmembranenanodomainsinthestabilityofintercellularmembranenanotubes
AT iglicales theroleofcholesterolsphingomyelinmembranenanodomainsinthestabilityofintercellularmembranenanotubes
AT lokarmarusa roleofcholesterolsphingomyelinmembranenanodomainsinthestabilityofintercellularmembranenanotubes
AT kabasodoron roleofcholesterolsphingomyelinmembranenanodomainsinthestabilityofintercellularmembranenanotubes
AT resniknatasa roleofcholesterolsphingomyelinmembranenanodomainsinthestabilityofintercellularmembranenanotubes
AT sepcickristina roleofcholesterolsphingomyelinmembranenanodomainsinthestabilityofintercellularmembranenanotubes
AT kraljiglicveronika roleofcholesterolsphingomyelinmembranenanodomainsinthestabilityofintercellularmembranenanotubes
AT veranicpeter roleofcholesterolsphingomyelinmembranenanodomainsinthestabilityofintercellularmembranenanotubes
AT zorecrobert roleofcholesterolsphingomyelinmembranenanodomainsinthestabilityofintercellularmembranenanotubes
AT iglicales roleofcholesterolsphingomyelinmembranenanodomainsinthestabilityofintercellularmembranenanotubes