Cargando…
NetMets: software for quantifying and visualizing errors in biological network segmentation
One of the major goals in biomedical image processing is accurate segmentation of networks embedded in volumetric data sets. Biological networks are composed of a meshwork of thin filaments that span large volumes of tissue. Examples of these structures include neurons and microvasculature, which ca...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3355337/ https://www.ncbi.nlm.nih.gov/pubmed/22607549 http://dx.doi.org/10.1186/1471-2105-13-S8-S7 |
_version_ | 1782233355296702464 |
---|---|
author | Mayerich, David Bjornsson, Chris Taylor, Jonathan Roysam, Badrinath |
author_facet | Mayerich, David Bjornsson, Chris Taylor, Jonathan Roysam, Badrinath |
author_sort | Mayerich, David |
collection | PubMed |
description | One of the major goals in biomedical image processing is accurate segmentation of networks embedded in volumetric data sets. Biological networks are composed of a meshwork of thin filaments that span large volumes of tissue. Examples of these structures include neurons and microvasculature, which can take the form of both hierarchical trees and fully connected networks, depending on the imaging modality and resolution. Network function depends on both the geometric structure and connectivity. Therefore, there is considerable demand for algorithms that segment biological networks embedded in three-dimensional data. While a large number of tracking and segmentation algorithms have been published, most of these do not generalize well across data sets. One of the major reasons for the lack of general-purpose algorithms is the limited availability of metrics that can be used to quantitatively compare their effectiveness against a pre-constructed ground-truth. In this paper, we propose a robust metric for measuring and visualizing the differences between network models. Our algorithm takes into account both geometry and connectivity to measure network similarity. These metrics are then mapped back onto an explicit model for visualization. |
format | Online Article Text |
id | pubmed-3355337 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-33553372012-05-18 NetMets: software for quantifying and visualizing errors in biological network segmentation Mayerich, David Bjornsson, Chris Taylor, Jonathan Roysam, Badrinath BMC Bioinformatics Research One of the major goals in biomedical image processing is accurate segmentation of networks embedded in volumetric data sets. Biological networks are composed of a meshwork of thin filaments that span large volumes of tissue. Examples of these structures include neurons and microvasculature, which can take the form of both hierarchical trees and fully connected networks, depending on the imaging modality and resolution. Network function depends on both the geometric structure and connectivity. Therefore, there is considerable demand for algorithms that segment biological networks embedded in three-dimensional data. While a large number of tracking and segmentation algorithms have been published, most of these do not generalize well across data sets. One of the major reasons for the lack of general-purpose algorithms is the limited availability of metrics that can be used to quantitatively compare their effectiveness against a pre-constructed ground-truth. In this paper, we propose a robust metric for measuring and visualizing the differences between network models. Our algorithm takes into account both geometry and connectivity to measure network similarity. These metrics are then mapped back onto an explicit model for visualization. BioMed Central 2012-05-18 /pmc/articles/PMC3355337/ /pubmed/22607549 http://dx.doi.org/10.1186/1471-2105-13-S8-S7 Text en Copyright ©2012 Mayerich et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Mayerich, David Bjornsson, Chris Taylor, Jonathan Roysam, Badrinath NetMets: software for quantifying and visualizing errors in biological network segmentation |
title | NetMets: software for quantifying and visualizing errors in biological network segmentation |
title_full | NetMets: software for quantifying and visualizing errors in biological network segmentation |
title_fullStr | NetMets: software for quantifying and visualizing errors in biological network segmentation |
title_full_unstemmed | NetMets: software for quantifying and visualizing errors in biological network segmentation |
title_short | NetMets: software for quantifying and visualizing errors in biological network segmentation |
title_sort | netmets: software for quantifying and visualizing errors in biological network segmentation |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3355337/ https://www.ncbi.nlm.nih.gov/pubmed/22607549 http://dx.doi.org/10.1186/1471-2105-13-S8-S7 |
work_keys_str_mv | AT mayerichdavid netmetssoftwareforquantifyingandvisualizingerrorsinbiologicalnetworksegmentation AT bjornssonchris netmetssoftwareforquantifyingandvisualizingerrorsinbiologicalnetworksegmentation AT taylorjonathan netmetssoftwareforquantifyingandvisualizingerrorsinbiologicalnetworksegmentation AT roysambadrinath netmetssoftwareforquantifyingandvisualizingerrorsinbiologicalnetworksegmentation |