Cargando…
Fast Direct Injection Mass-Spectrometric Characterization of Stimuli for Insect Electrophysiology by Proton Transfer Reaction-Time of Flight Mass-Spectrometry (PTR-ToF-MS)
Electrophysiological techniques are used in insect neuroscience to measure the response of olfactory neurons to volatile odour stimuli. Widely used systems to deliver an olfactory stimulus to a test insect include airstream guided flow through glass cartridges loaded with a given volatile compound o...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3355401/ https://www.ncbi.nlm.nih.gov/pubmed/22666020 http://dx.doi.org/10.3390/s120404091 |
_version_ | 1782233363560529920 |
---|---|
author | Tasin, Marco Cappellin, Luca Biasioli, Franco |
author_facet | Tasin, Marco Cappellin, Luca Biasioli, Franco |
author_sort | Tasin, Marco |
collection | PubMed |
description | Electrophysiological techniques are used in insect neuroscience to measure the response of olfactory neurons to volatile odour stimuli. Widely used systems to deliver an olfactory stimulus to a test insect include airstream guided flow through glass cartridges loaded with a given volatile compound on a sorbent support. Precise measurement of the quantity of compound reaching the sensory organ of the test organism is an urgent task in insect electrophysiology. In this study we evaluated the performances of the recent realised proton transfer reaction-time of flight mass-spectrometry (PTR-ToF-MS) as a fast and selective gas sensor. In particular, we characterised the gas emission from cartridges loaded with a set of volatile compounds belonging to different chemical classes and commonly used in electrophysiological experiments. PTR-ToF-MS allowed a fast monitoring of all investigated compounds with sufficient sensitivity and time resolution. The detection and the quantification of air contaminants and solvent or synthetic standards impurities allowed a precise quantification of the stimulus exiting the cartridge. The outcome of this study was twofold: on one hand we showed that PTR-ToF-MS allows monitoring fast processes with high sensitivity by real time detection of a broad number of compounds; on the other hand we provided a tool to solve an important issue in insect electrophysiology. |
format | Online Article Text |
id | pubmed-3355401 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Molecular Diversity Preservation International (MDPI) |
record_format | MEDLINE/PubMed |
spelling | pubmed-33554012012-06-04 Fast Direct Injection Mass-Spectrometric Characterization of Stimuli for Insect Electrophysiology by Proton Transfer Reaction-Time of Flight Mass-Spectrometry (PTR-ToF-MS) Tasin, Marco Cappellin, Luca Biasioli, Franco Sensors (Basel) Article Electrophysiological techniques are used in insect neuroscience to measure the response of olfactory neurons to volatile odour stimuli. Widely used systems to deliver an olfactory stimulus to a test insect include airstream guided flow through glass cartridges loaded with a given volatile compound on a sorbent support. Precise measurement of the quantity of compound reaching the sensory organ of the test organism is an urgent task in insect electrophysiology. In this study we evaluated the performances of the recent realised proton transfer reaction-time of flight mass-spectrometry (PTR-ToF-MS) as a fast and selective gas sensor. In particular, we characterised the gas emission from cartridges loaded with a set of volatile compounds belonging to different chemical classes and commonly used in electrophysiological experiments. PTR-ToF-MS allowed a fast monitoring of all investigated compounds with sufficient sensitivity and time resolution. The detection and the quantification of air contaminants and solvent or synthetic standards impurities allowed a precise quantification of the stimulus exiting the cartridge. The outcome of this study was twofold: on one hand we showed that PTR-ToF-MS allows monitoring fast processes with high sensitivity by real time detection of a broad number of compounds; on the other hand we provided a tool to solve an important issue in insect electrophysiology. Molecular Diversity Preservation International (MDPI) 2012-03-27 /pmc/articles/PMC3355401/ /pubmed/22666020 http://dx.doi.org/10.3390/s120404091 Text en © 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Article Tasin, Marco Cappellin, Luca Biasioli, Franco Fast Direct Injection Mass-Spectrometric Characterization of Stimuli for Insect Electrophysiology by Proton Transfer Reaction-Time of Flight Mass-Spectrometry (PTR-ToF-MS) |
title | Fast Direct Injection Mass-Spectrometric Characterization of Stimuli for Insect Electrophysiology by Proton Transfer Reaction-Time of Flight Mass-Spectrometry (PTR-ToF-MS) |
title_full | Fast Direct Injection Mass-Spectrometric Characterization of Stimuli for Insect Electrophysiology by Proton Transfer Reaction-Time of Flight Mass-Spectrometry (PTR-ToF-MS) |
title_fullStr | Fast Direct Injection Mass-Spectrometric Characterization of Stimuli for Insect Electrophysiology by Proton Transfer Reaction-Time of Flight Mass-Spectrometry (PTR-ToF-MS) |
title_full_unstemmed | Fast Direct Injection Mass-Spectrometric Characterization of Stimuli for Insect Electrophysiology by Proton Transfer Reaction-Time of Flight Mass-Spectrometry (PTR-ToF-MS) |
title_short | Fast Direct Injection Mass-Spectrometric Characterization of Stimuli for Insect Electrophysiology by Proton Transfer Reaction-Time of Flight Mass-Spectrometry (PTR-ToF-MS) |
title_sort | fast direct injection mass-spectrometric characterization of stimuli for insect electrophysiology by proton transfer reaction-time of flight mass-spectrometry (ptr-tof-ms) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3355401/ https://www.ncbi.nlm.nih.gov/pubmed/22666020 http://dx.doi.org/10.3390/s120404091 |
work_keys_str_mv | AT tasinmarco fastdirectinjectionmassspectrometriccharacterizationofstimuliforinsectelectrophysiologybyprotontransferreactiontimeofflightmassspectrometryptrtofms AT cappellinluca fastdirectinjectionmassspectrometriccharacterizationofstimuliforinsectelectrophysiologybyprotontransferreactiontimeofflightmassspectrometryptrtofms AT biasiolifranco fastdirectinjectionmassspectrometriccharacterizationofstimuliforinsectelectrophysiologybyprotontransferreactiontimeofflightmassspectrometryptrtofms |