Cargando…

Gold Nanoparticles Functionalized with Peptides for Specific Affinity Aggregation Assays of Estrogen Receptors and Their Agonists

Nuclear receptors regulate the transcription of genes and various functions such as development, differentiation, homeostasis, and behavior by formation of complexes with ligand and co-activator. Recent findings have shown that agonists of a ligand may have a toxic effect on cellular/tissular functi...

Descripción completa

Detalles Bibliográficos
Autores principales: Takatsuji, Yoshiyuki, Ikeno, Shinya, Haruyama, Tetsuya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3355452/
https://www.ncbi.nlm.nih.gov/pubmed/22666069
http://dx.doi.org/10.3390/s120404952
Descripción
Sumario:Nuclear receptors regulate the transcription of genes and various functions such as development, differentiation, homeostasis, and behavior by formation of complexes with ligand and co-activator. Recent findings have shown that agonists of a ligand may have a toxic effect on cellular/tissular function through improper activation of nuclear receptors. In this study, a simple assay system of hetero-complexes of three different molecules (estrogen receptor, ligand, and co-activator peptide) has been developed. This assay system employs functionalized gold nanoparticles (GNPs: 15 nm in diameter). The surfaces of the GNPs were modified by a 12- or 20-amino-acid peptide that contains the sequence of co-activator for activating nuclear receptor by an agonist ligand. Owing to the affinity of the peptide, the functionalized GNPs aggregate faster when the nuclear receptor and the agonist ligand are also present. The aggregation of GNPs can be identified by shifts in adsorption spectrum, which give information about the specificity of agonist ligands. Similarly, this spectrum shift can measure concentration of known agonist ligand. This simple agonist screening will be employed as high through-put analysis (HTA) in the discovery of drugs that act through nuclear receptors.