Cargando…
No Evidence for “Break-Induced Replication” in a Higher Plant – But Break-Induced Conversion May Occur
“Break-induced replication” (BIR) is considered as one way to repair DNA double-strand breaks (DSBs). BIR is defined as replication of the proximal break-ends up to the end of the broken chromosome using an undamaged (homologous) double-stranded template and mimicking a non-reciprocal translocation....
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Research Foundation
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3355710/ https://www.ncbi.nlm.nih.gov/pubmed/22639575 http://dx.doi.org/10.3389/fpls.2011.00008 |
Sumario: | “Break-induced replication” (BIR) is considered as one way to repair DNA double-strand breaks (DSBs). BIR is defined as replication of the proximal break-ends up to the end of the broken chromosome using an undamaged (homologous) double-stranded template and mimicking a non-reciprocal translocation. This phenomenon was detected by genetic experiments in yeast. BIR is assumed to occur also in mammals, but experimental evidence is not yet at hand. We have studied chromosomes of the field bean, Vicia faba L., with respect to the occurrence of BIR after DSB induction during S and G2 phase. Simultaneous incorporation of the base analog ethynyldeoxyuridine (EdU) revealed no chromosomal replication pattern indicative of BIR. Thus, if occurring at all, BIR does not play a major role in DSB repair in higher plants with large chromosome arms. However, the frequency of interstitial asymmetric EdU incorporation within heterochromatic regions, visible on metaphase chromosomes, increased after chromosome breakage during S and G2 phase. Such asymmetric labeling could be interpreted as conservative replication up to the next replicon, circumventing a DSB, and yielding an interstitial conversion-like event. |
---|