Cargando…
Metabolomics as a Hypothesis-Generating Functional Genomics Tool for the Annotation of Arabidopsis thaliana Genes of “Unknown Function”
Metabolomics is the methodology that identifies and measures global pools of small molecules (of less than about 1,000 Da) of a biological sample, which are collectively called the metabolome. Metabolomics can therefore reveal the metabolic outcome of a genetic or environmental perturbation of a met...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Research Foundation
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3355754/ https://www.ncbi.nlm.nih.gov/pubmed/22645570 http://dx.doi.org/10.3389/fpls.2012.00015 |
_version_ | 1782233424424075264 |
---|---|
author | Quanbeck, Stephanie M. Brachova, Libuse Campbell, Alexis A. Guan, Xin Perera, Ann He, Kun Rhee, Seung Y. Bais, Preeti Dickerson, Julie A. Dixon, Philip Wohlgemuth, Gert Fiehn, Oliver Barkan, Lenore Lange, Iris Lange, B. Markus Lee, Insuk Cortes, Diego Salazar, Carolina Shuman, Joel Shulaev, Vladimir Huhman, David V. Sumner, Lloyd W. Roth, Mary R. Welti, Ruth Ilarslan, Hilal Wurtele, Eve S. Nikolau, Basil J. |
author_facet | Quanbeck, Stephanie M. Brachova, Libuse Campbell, Alexis A. Guan, Xin Perera, Ann He, Kun Rhee, Seung Y. Bais, Preeti Dickerson, Julie A. Dixon, Philip Wohlgemuth, Gert Fiehn, Oliver Barkan, Lenore Lange, Iris Lange, B. Markus Lee, Insuk Cortes, Diego Salazar, Carolina Shuman, Joel Shulaev, Vladimir Huhman, David V. Sumner, Lloyd W. Roth, Mary R. Welti, Ruth Ilarslan, Hilal Wurtele, Eve S. Nikolau, Basil J. |
author_sort | Quanbeck, Stephanie M. |
collection | PubMed |
description | Metabolomics is the methodology that identifies and measures global pools of small molecules (of less than about 1,000 Da) of a biological sample, which are collectively called the metabolome. Metabolomics can therefore reveal the metabolic outcome of a genetic or environmental perturbation of a metabolic regulatory network, and thus provide insights into the structure and regulation of that network. Because of the chemical complexity of the metabolome and limitations associated with individual analytical platforms for determining the metabolome, it is currently difficult to capture the complete metabolome of an organism or tissue, which is in contrast to genomics and transcriptomics. This paper describes the analysis of Arabidopsis metabolomics data sets acquired by a consortium that includes five analytical laboratories, bioinformaticists, and biostatisticians, which aims to develop and validate metabolomics as a hypothesis-generating functional genomics tool. The consortium is determining the metabolomes of Arabidopsis T-DNA mutant stocks, grown in standardized controlled environment optimized to minimize environmental impacts on the metabolomes. Metabolomics data were generated with seven analytical platforms, and the combined data is being provided to the research community to formulate initial hypotheses about genes of unknown function (GUFs). A public database (www.PlantMetabolomics.org) has been developed to provide the scientific community with access to the data along with tools to allow for its interactive analysis. Exemplary datasets are discussed to validate the approach, which illustrate how initial hypotheses can be generated from the consortium-produced metabolomics data, integrated with prior knowledge to provide a testable hypothesis concerning the functionality of GUFs. |
format | Online Article Text |
id | pubmed-3355754 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Frontiers Research Foundation |
record_format | MEDLINE/PubMed |
spelling | pubmed-33557542012-05-29 Metabolomics as a Hypothesis-Generating Functional Genomics Tool for the Annotation of Arabidopsis thaliana Genes of “Unknown Function” Quanbeck, Stephanie M. Brachova, Libuse Campbell, Alexis A. Guan, Xin Perera, Ann He, Kun Rhee, Seung Y. Bais, Preeti Dickerson, Julie A. Dixon, Philip Wohlgemuth, Gert Fiehn, Oliver Barkan, Lenore Lange, Iris Lange, B. Markus Lee, Insuk Cortes, Diego Salazar, Carolina Shuman, Joel Shulaev, Vladimir Huhman, David V. Sumner, Lloyd W. Roth, Mary R. Welti, Ruth Ilarslan, Hilal Wurtele, Eve S. Nikolau, Basil J. Front Plant Sci Plant Science Metabolomics is the methodology that identifies and measures global pools of small molecules (of less than about 1,000 Da) of a biological sample, which are collectively called the metabolome. Metabolomics can therefore reveal the metabolic outcome of a genetic or environmental perturbation of a metabolic regulatory network, and thus provide insights into the structure and regulation of that network. Because of the chemical complexity of the metabolome and limitations associated with individual analytical platforms for determining the metabolome, it is currently difficult to capture the complete metabolome of an organism or tissue, which is in contrast to genomics and transcriptomics. This paper describes the analysis of Arabidopsis metabolomics data sets acquired by a consortium that includes five analytical laboratories, bioinformaticists, and biostatisticians, which aims to develop and validate metabolomics as a hypothesis-generating functional genomics tool. The consortium is determining the metabolomes of Arabidopsis T-DNA mutant stocks, grown in standardized controlled environment optimized to minimize environmental impacts on the metabolomes. Metabolomics data were generated with seven analytical platforms, and the combined data is being provided to the research community to formulate initial hypotheses about genes of unknown function (GUFs). A public database (www.PlantMetabolomics.org) has been developed to provide the scientific community with access to the data along with tools to allow for its interactive analysis. Exemplary datasets are discussed to validate the approach, which illustrate how initial hypotheses can be generated from the consortium-produced metabolomics data, integrated with prior knowledge to provide a testable hypothesis concerning the functionality of GUFs. Frontiers Research Foundation 2012-02-10 /pmc/articles/PMC3355754/ /pubmed/22645570 http://dx.doi.org/10.3389/fpls.2012.00015 Text en Copyright © 2012 Quanbeck, Brachova, Campbell, Guan, Perera, He, Rhee, Bais, Dickerson, Dixon, Wohlgemuth, Fiehn, Barkan, Lange, Lange, Lee, Cortes, Salazar, Shuman, Shulaev, Huhman, Sumner, Roth, Welti, Ilarslan, Wurtele and Nikolau. http://www.frontiersin.org/licenseagreement This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited. |
spellingShingle | Plant Science Quanbeck, Stephanie M. Brachova, Libuse Campbell, Alexis A. Guan, Xin Perera, Ann He, Kun Rhee, Seung Y. Bais, Preeti Dickerson, Julie A. Dixon, Philip Wohlgemuth, Gert Fiehn, Oliver Barkan, Lenore Lange, Iris Lange, B. Markus Lee, Insuk Cortes, Diego Salazar, Carolina Shuman, Joel Shulaev, Vladimir Huhman, David V. Sumner, Lloyd W. Roth, Mary R. Welti, Ruth Ilarslan, Hilal Wurtele, Eve S. Nikolau, Basil J. Metabolomics as a Hypothesis-Generating Functional Genomics Tool for the Annotation of Arabidopsis thaliana Genes of “Unknown Function” |
title | Metabolomics as a Hypothesis-Generating Functional Genomics Tool for the Annotation of Arabidopsis thaliana Genes of “Unknown Function” |
title_full | Metabolomics as a Hypothesis-Generating Functional Genomics Tool for the Annotation of Arabidopsis thaliana Genes of “Unknown Function” |
title_fullStr | Metabolomics as a Hypothesis-Generating Functional Genomics Tool for the Annotation of Arabidopsis thaliana Genes of “Unknown Function” |
title_full_unstemmed | Metabolomics as a Hypothesis-Generating Functional Genomics Tool for the Annotation of Arabidopsis thaliana Genes of “Unknown Function” |
title_short | Metabolomics as a Hypothesis-Generating Functional Genomics Tool for the Annotation of Arabidopsis thaliana Genes of “Unknown Function” |
title_sort | metabolomics as a hypothesis-generating functional genomics tool for the annotation of arabidopsis thaliana genes of “unknown function” |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3355754/ https://www.ncbi.nlm.nih.gov/pubmed/22645570 http://dx.doi.org/10.3389/fpls.2012.00015 |
work_keys_str_mv | AT quanbeckstephaniem metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction AT brachovalibuse metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction AT campbellalexisa metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction AT guanxin metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction AT pereraann metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction AT hekun metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction AT rheeseungy metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction AT baispreeti metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction AT dickersonjuliea metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction AT dixonphilip metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction AT wohlgemuthgert metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction AT fiehnoliver metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction AT barkanlenore metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction AT langeiris metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction AT langebmarkus metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction AT leeinsuk metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction AT cortesdiego metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction AT salazarcarolina metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction AT shumanjoel metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction AT shulaevvladimir metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction AT huhmandavidv metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction AT sumnerlloydw metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction AT rothmaryr metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction AT weltiruth metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction AT ilarslanhilal metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction AT wurteleeves metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction AT nikolaubasilj metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction |