Cargando…

Metabolomics as a Hypothesis-Generating Functional Genomics Tool for the Annotation of Arabidopsis thaliana Genes of “Unknown Function”

Metabolomics is the methodology that identifies and measures global pools of small molecules (of less than about 1,000 Da) of a biological sample, which are collectively called the metabolome. Metabolomics can therefore reveal the metabolic outcome of a genetic or environmental perturbation of a met...

Descripción completa

Detalles Bibliográficos
Autores principales: Quanbeck, Stephanie M., Brachova, Libuse, Campbell, Alexis A., Guan, Xin, Perera, Ann, He, Kun, Rhee, Seung Y., Bais, Preeti, Dickerson, Julie A., Dixon, Philip, Wohlgemuth, Gert, Fiehn, Oliver, Barkan, Lenore, Lange, Iris, Lange, B. Markus, Lee, Insuk, Cortes, Diego, Salazar, Carolina, Shuman, Joel, Shulaev, Vladimir, Huhman, David V., Sumner, Lloyd W., Roth, Mary R., Welti, Ruth, Ilarslan, Hilal, Wurtele, Eve S., Nikolau, Basil J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Research Foundation 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3355754/
https://www.ncbi.nlm.nih.gov/pubmed/22645570
http://dx.doi.org/10.3389/fpls.2012.00015
_version_ 1782233424424075264
author Quanbeck, Stephanie M.
Brachova, Libuse
Campbell, Alexis A.
Guan, Xin
Perera, Ann
He, Kun
Rhee, Seung Y.
Bais, Preeti
Dickerson, Julie A.
Dixon, Philip
Wohlgemuth, Gert
Fiehn, Oliver
Barkan, Lenore
Lange, Iris
Lange, B. Markus
Lee, Insuk
Cortes, Diego
Salazar, Carolina
Shuman, Joel
Shulaev, Vladimir
Huhman, David V.
Sumner, Lloyd W.
Roth, Mary R.
Welti, Ruth
Ilarslan, Hilal
Wurtele, Eve S.
Nikolau, Basil J.
author_facet Quanbeck, Stephanie M.
Brachova, Libuse
Campbell, Alexis A.
Guan, Xin
Perera, Ann
He, Kun
Rhee, Seung Y.
Bais, Preeti
Dickerson, Julie A.
Dixon, Philip
Wohlgemuth, Gert
Fiehn, Oliver
Barkan, Lenore
Lange, Iris
Lange, B. Markus
Lee, Insuk
Cortes, Diego
Salazar, Carolina
Shuman, Joel
Shulaev, Vladimir
Huhman, David V.
Sumner, Lloyd W.
Roth, Mary R.
Welti, Ruth
Ilarslan, Hilal
Wurtele, Eve S.
Nikolau, Basil J.
author_sort Quanbeck, Stephanie M.
collection PubMed
description Metabolomics is the methodology that identifies and measures global pools of small molecules (of less than about 1,000 Da) of a biological sample, which are collectively called the metabolome. Metabolomics can therefore reveal the metabolic outcome of a genetic or environmental perturbation of a metabolic regulatory network, and thus provide insights into the structure and regulation of that network. Because of the chemical complexity of the metabolome and limitations associated with individual analytical platforms for determining the metabolome, it is currently difficult to capture the complete metabolome of an organism or tissue, which is in contrast to genomics and transcriptomics. This paper describes the analysis of Arabidopsis metabolomics data sets acquired by a consortium that includes five analytical laboratories, bioinformaticists, and biostatisticians, which aims to develop and validate metabolomics as a hypothesis-generating functional genomics tool. The consortium is determining the metabolomes of Arabidopsis T-DNA mutant stocks, grown in standardized controlled environment optimized to minimize environmental impacts on the metabolomes. Metabolomics data were generated with seven analytical platforms, and the combined data is being provided to the research community to formulate initial hypotheses about genes of unknown function (GUFs). A public database (www.PlantMetabolomics.org) has been developed to provide the scientific community with access to the data along with tools to allow for its interactive analysis. Exemplary datasets are discussed to validate the approach, which illustrate how initial hypotheses can be generated from the consortium-produced metabolomics data, integrated with prior knowledge to provide a testable hypothesis concerning the functionality of GUFs.
format Online
Article
Text
id pubmed-3355754
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Frontiers Research Foundation
record_format MEDLINE/PubMed
spelling pubmed-33557542012-05-29 Metabolomics as a Hypothesis-Generating Functional Genomics Tool for the Annotation of Arabidopsis thaliana Genes of “Unknown Function” Quanbeck, Stephanie M. Brachova, Libuse Campbell, Alexis A. Guan, Xin Perera, Ann He, Kun Rhee, Seung Y. Bais, Preeti Dickerson, Julie A. Dixon, Philip Wohlgemuth, Gert Fiehn, Oliver Barkan, Lenore Lange, Iris Lange, B. Markus Lee, Insuk Cortes, Diego Salazar, Carolina Shuman, Joel Shulaev, Vladimir Huhman, David V. Sumner, Lloyd W. Roth, Mary R. Welti, Ruth Ilarslan, Hilal Wurtele, Eve S. Nikolau, Basil J. Front Plant Sci Plant Science Metabolomics is the methodology that identifies and measures global pools of small molecules (of less than about 1,000 Da) of a biological sample, which are collectively called the metabolome. Metabolomics can therefore reveal the metabolic outcome of a genetic or environmental perturbation of a metabolic regulatory network, and thus provide insights into the structure and regulation of that network. Because of the chemical complexity of the metabolome and limitations associated with individual analytical platforms for determining the metabolome, it is currently difficult to capture the complete metabolome of an organism or tissue, which is in contrast to genomics and transcriptomics. This paper describes the analysis of Arabidopsis metabolomics data sets acquired by a consortium that includes five analytical laboratories, bioinformaticists, and biostatisticians, which aims to develop and validate metabolomics as a hypothesis-generating functional genomics tool. The consortium is determining the metabolomes of Arabidopsis T-DNA mutant stocks, grown in standardized controlled environment optimized to minimize environmental impacts on the metabolomes. Metabolomics data were generated with seven analytical platforms, and the combined data is being provided to the research community to formulate initial hypotheses about genes of unknown function (GUFs). A public database (www.PlantMetabolomics.org) has been developed to provide the scientific community with access to the data along with tools to allow for its interactive analysis. Exemplary datasets are discussed to validate the approach, which illustrate how initial hypotheses can be generated from the consortium-produced metabolomics data, integrated with prior knowledge to provide a testable hypothesis concerning the functionality of GUFs. Frontiers Research Foundation 2012-02-10 /pmc/articles/PMC3355754/ /pubmed/22645570 http://dx.doi.org/10.3389/fpls.2012.00015 Text en Copyright © 2012 Quanbeck, Brachova, Campbell, Guan, Perera, He, Rhee, Bais, Dickerson, Dixon, Wohlgemuth, Fiehn, Barkan, Lange, Lange, Lee, Cortes, Salazar, Shuman, Shulaev, Huhman, Sumner, Roth, Welti, Ilarslan, Wurtele and Nikolau. http://www.frontiersin.org/licenseagreement This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited.
spellingShingle Plant Science
Quanbeck, Stephanie M.
Brachova, Libuse
Campbell, Alexis A.
Guan, Xin
Perera, Ann
He, Kun
Rhee, Seung Y.
Bais, Preeti
Dickerson, Julie A.
Dixon, Philip
Wohlgemuth, Gert
Fiehn, Oliver
Barkan, Lenore
Lange, Iris
Lange, B. Markus
Lee, Insuk
Cortes, Diego
Salazar, Carolina
Shuman, Joel
Shulaev, Vladimir
Huhman, David V.
Sumner, Lloyd W.
Roth, Mary R.
Welti, Ruth
Ilarslan, Hilal
Wurtele, Eve S.
Nikolau, Basil J.
Metabolomics as a Hypothesis-Generating Functional Genomics Tool for the Annotation of Arabidopsis thaliana Genes of “Unknown Function”
title Metabolomics as a Hypothesis-Generating Functional Genomics Tool for the Annotation of Arabidopsis thaliana Genes of “Unknown Function”
title_full Metabolomics as a Hypothesis-Generating Functional Genomics Tool for the Annotation of Arabidopsis thaliana Genes of “Unknown Function”
title_fullStr Metabolomics as a Hypothesis-Generating Functional Genomics Tool for the Annotation of Arabidopsis thaliana Genes of “Unknown Function”
title_full_unstemmed Metabolomics as a Hypothesis-Generating Functional Genomics Tool for the Annotation of Arabidopsis thaliana Genes of “Unknown Function”
title_short Metabolomics as a Hypothesis-Generating Functional Genomics Tool for the Annotation of Arabidopsis thaliana Genes of “Unknown Function”
title_sort metabolomics as a hypothesis-generating functional genomics tool for the annotation of arabidopsis thaliana genes of “unknown function”
topic Plant Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3355754/
https://www.ncbi.nlm.nih.gov/pubmed/22645570
http://dx.doi.org/10.3389/fpls.2012.00015
work_keys_str_mv AT quanbeckstephaniem metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction
AT brachovalibuse metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction
AT campbellalexisa metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction
AT guanxin metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction
AT pereraann metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction
AT hekun metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction
AT rheeseungy metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction
AT baispreeti metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction
AT dickersonjuliea metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction
AT dixonphilip metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction
AT wohlgemuthgert metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction
AT fiehnoliver metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction
AT barkanlenore metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction
AT langeiris metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction
AT langebmarkus metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction
AT leeinsuk metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction
AT cortesdiego metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction
AT salazarcarolina metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction
AT shumanjoel metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction
AT shulaevvladimir metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction
AT huhmandavidv metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction
AT sumnerlloydw metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction
AT rothmaryr metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction
AT weltiruth metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction
AT ilarslanhilal metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction
AT wurteleeves metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction
AT nikolaubasilj metabolomicsasahypothesisgeneratingfunctionalgenomicstoolfortheannotationofarabidopsisthalianagenesofunknownfunction