Cargando…
Transcriptome-Wide Identification of Preferentially Expressed Genes in the Hypothalamus and Pituitary Gland
To identify preferentially expressed genes in the central endocrine organs of the hypothalamus and pituitary gland, we generated transcriptome-wide mRNA profiles of the hypothalamus, pituitary gland, and parietal cortex in male mice (12–15 weeks old) using serial analysis of gene expression (SAGE)....
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Research Foundation
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3355919/ https://www.ncbi.nlm.nih.gov/pubmed/22649398 http://dx.doi.org/10.3389/fendo.2011.00111 |
_version_ | 1782233461228044288 |
---|---|
author | St-Amand, Jonny Yoshioka, Mayumi Tanaka, Keitaro Nishida, Yuichiro |
author_facet | St-Amand, Jonny Yoshioka, Mayumi Tanaka, Keitaro Nishida, Yuichiro |
author_sort | St-Amand, Jonny |
collection | PubMed |
description | To identify preferentially expressed genes in the central endocrine organs of the hypothalamus and pituitary gland, we generated transcriptome-wide mRNA profiles of the hypothalamus, pituitary gland, and parietal cortex in male mice (12–15 weeks old) using serial analysis of gene expression (SAGE). Total counts of SAGE tags for the hypothalamus, pituitary gland, and parietal cortex were 165824, 126688, and 161045 tags, respectively. This represented 59244, 45151, and 55131 distinct tags, respectively. Comparison of these mRNA profiles revealed that 22 mRNA species, including three potential novel transcripts, were preferentially expressed in the hypothalamus. In addition to well-known hypothalamic transcripts, such as hypocretin, several genes involved in hormone function, intracellular transduction, metabolism, protein transport, steroidogenesis, extracellular matrix, and brain disease were identified as preferentially expressed hypothalamic transcripts. In the pituitary gland, 106 mRNA species, including 60 potential novel transcripts, were preferentially expressed. In addition to well-known pituitary genes, such as growth hormone and thyroid stimulating hormone beta, a number of genes classified to function in transport, amino acid metabolism, intracellular transduction, cell adhesion, disulfide bond formation, stress response, transcription, protein synthesis, and turnover, cell differentiation, the cell cycle, and in the cytoskeleton and extracellular matrix were also preferentially expressed. In conclusion, the current study identified not only well-known hypothalamic and pituitary transcripts but also a number of new candidates likely to be involved in endocrine homeostatic systems regulated by the hypothalamus and pituitary gland. |
format | Online Article Text |
id | pubmed-3355919 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Frontiers Research Foundation |
record_format | MEDLINE/PubMed |
spelling | pubmed-33559192012-05-30 Transcriptome-Wide Identification of Preferentially Expressed Genes in the Hypothalamus and Pituitary Gland St-Amand, Jonny Yoshioka, Mayumi Tanaka, Keitaro Nishida, Yuichiro Front Endocrinol (Lausanne) Endocrinology To identify preferentially expressed genes in the central endocrine organs of the hypothalamus and pituitary gland, we generated transcriptome-wide mRNA profiles of the hypothalamus, pituitary gland, and parietal cortex in male mice (12–15 weeks old) using serial analysis of gene expression (SAGE). Total counts of SAGE tags for the hypothalamus, pituitary gland, and parietal cortex were 165824, 126688, and 161045 tags, respectively. This represented 59244, 45151, and 55131 distinct tags, respectively. Comparison of these mRNA profiles revealed that 22 mRNA species, including three potential novel transcripts, were preferentially expressed in the hypothalamus. In addition to well-known hypothalamic transcripts, such as hypocretin, several genes involved in hormone function, intracellular transduction, metabolism, protein transport, steroidogenesis, extracellular matrix, and brain disease were identified as preferentially expressed hypothalamic transcripts. In the pituitary gland, 106 mRNA species, including 60 potential novel transcripts, were preferentially expressed. In addition to well-known pituitary genes, such as growth hormone and thyroid stimulating hormone beta, a number of genes classified to function in transport, amino acid metabolism, intracellular transduction, cell adhesion, disulfide bond formation, stress response, transcription, protein synthesis, and turnover, cell differentiation, the cell cycle, and in the cytoskeleton and extracellular matrix were also preferentially expressed. In conclusion, the current study identified not only well-known hypothalamic and pituitary transcripts but also a number of new candidates likely to be involved in endocrine homeostatic systems regulated by the hypothalamus and pituitary gland. Frontiers Research Foundation 2012-01-05 /pmc/articles/PMC3355919/ /pubmed/22649398 http://dx.doi.org/10.3389/fendo.2011.00111 Text en Copyright © 2012 St-Amand, Yoshioka, Tanaka and Nishida. http://www.frontiersin.org/licenseagreement This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited. |
spellingShingle | Endocrinology St-Amand, Jonny Yoshioka, Mayumi Tanaka, Keitaro Nishida, Yuichiro Transcriptome-Wide Identification of Preferentially Expressed Genes in the Hypothalamus and Pituitary Gland |
title | Transcriptome-Wide Identification of Preferentially Expressed Genes in the Hypothalamus and Pituitary Gland |
title_full | Transcriptome-Wide Identification of Preferentially Expressed Genes in the Hypothalamus and Pituitary Gland |
title_fullStr | Transcriptome-Wide Identification of Preferentially Expressed Genes in the Hypothalamus and Pituitary Gland |
title_full_unstemmed | Transcriptome-Wide Identification of Preferentially Expressed Genes in the Hypothalamus and Pituitary Gland |
title_short | Transcriptome-Wide Identification of Preferentially Expressed Genes in the Hypothalamus and Pituitary Gland |
title_sort | transcriptome-wide identification of preferentially expressed genes in the hypothalamus and pituitary gland |
topic | Endocrinology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3355919/ https://www.ncbi.nlm.nih.gov/pubmed/22649398 http://dx.doi.org/10.3389/fendo.2011.00111 |
work_keys_str_mv | AT stamandjonny transcriptomewideidentificationofpreferentiallyexpressedgenesinthehypothalamusandpituitarygland AT yoshiokamayumi transcriptomewideidentificationofpreferentiallyexpressedgenesinthehypothalamusandpituitarygland AT tanakakeitaro transcriptomewideidentificationofpreferentiallyexpressedgenesinthehypothalamusandpituitarygland AT nishidayuichiro transcriptomewideidentificationofpreferentiallyexpressedgenesinthehypothalamusandpituitarygland |