Cargando…

Controlled synthesis and characterization of hollow flower-like silver nanostructures

BACKGROUND: The synthesis of anisotropic silver nanoparticles is a time-consuming process and involves the use of expensive toxic chemicals and specialized laboratory equipment. The presence of toxic chemicals in the prepared anisotropic silver nanostructures hindered their medical application. The...

Descripción completa

Detalles Bibliográficos
Autores principales: Eid, Kamel AM, Azzazy, Hassan ME
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3356183/
https://www.ncbi.nlm.nih.gov/pubmed/22619511
http://dx.doi.org/10.2147/IJN.S26524
_version_ 1782233514963369984
author Eid, Kamel AM
Azzazy, Hassan ME
author_facet Eid, Kamel AM
Azzazy, Hassan ME
author_sort Eid, Kamel AM
collection PubMed
description BACKGROUND: The synthesis of anisotropic silver nanoparticles is a time-consuming process and involves the use of expensive toxic chemicals and specialized laboratory equipment. The presence of toxic chemicals in the prepared anisotropic silver nanostructures hindered their medical application. The authors have developed a fast and inexpensive method for the synthesis of three-dimensional hollow flower-like silver nanostructures without the use of toxic chemicals. METHODS: In this method, silver nitrate was reduced using dextrose in presence of trisodium citrate as a capping agent. Sodium hydroxide was added to enhance reduction efficacy of dextrose and reduce time of synthesis. The effects of all four agents on the shape and size of silver nanostructures were investigated. RESULTS: Robust hollow flower-like silver nanostructures were successfully synthesized and ranged in size from 0.2 μm to 5.0 μm with surface area between 25–240 m(2)/g. Changing the concentration of silver nitrate, dextrose, sodium hydroxide, and trisodium citrate affected the size and shape of the synthesized structures, while changing temperature had no effect. CONCLUSION: The proposed method is simple, safe, and allows controlled synthesis of anisotropic silver nanostructures, which may represent promising tools as effective antimicrobial agents and for in vitro diagnostics. The synthesized hollow nanostructures may be used for enhanced drug encapsulation and sustained release.
format Online
Article
Text
id pubmed-3356183
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Dove Medical Press
record_format MEDLINE/PubMed
spelling pubmed-33561832012-05-22 Controlled synthesis and characterization of hollow flower-like silver nanostructures Eid, Kamel AM Azzazy, Hassan ME Int J Nanomedicine Methodology BACKGROUND: The synthesis of anisotropic silver nanoparticles is a time-consuming process and involves the use of expensive toxic chemicals and specialized laboratory equipment. The presence of toxic chemicals in the prepared anisotropic silver nanostructures hindered their medical application. The authors have developed a fast and inexpensive method for the synthesis of three-dimensional hollow flower-like silver nanostructures without the use of toxic chemicals. METHODS: In this method, silver nitrate was reduced using dextrose in presence of trisodium citrate as a capping agent. Sodium hydroxide was added to enhance reduction efficacy of dextrose and reduce time of synthesis. The effects of all four agents on the shape and size of silver nanostructures were investigated. RESULTS: Robust hollow flower-like silver nanostructures were successfully synthesized and ranged in size from 0.2 μm to 5.0 μm with surface area between 25–240 m(2)/g. Changing the concentration of silver nitrate, dextrose, sodium hydroxide, and trisodium citrate affected the size and shape of the synthesized structures, while changing temperature had no effect. CONCLUSION: The proposed method is simple, safe, and allows controlled synthesis of anisotropic silver nanostructures, which may represent promising tools as effective antimicrobial agents and for in vitro diagnostics. The synthesized hollow nanostructures may be used for enhanced drug encapsulation and sustained release. Dove Medical Press 2012 2012-03-21 /pmc/articles/PMC3356183/ /pubmed/22619511 http://dx.doi.org/10.2147/IJN.S26524 Text en © 2012 Eid and Azzazy, publisher and licensee Dove Medical Press Ltd. This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited.
spellingShingle Methodology
Eid, Kamel AM
Azzazy, Hassan ME
Controlled synthesis and characterization of hollow flower-like silver nanostructures
title Controlled synthesis and characterization of hollow flower-like silver nanostructures
title_full Controlled synthesis and characterization of hollow flower-like silver nanostructures
title_fullStr Controlled synthesis and characterization of hollow flower-like silver nanostructures
title_full_unstemmed Controlled synthesis and characterization of hollow flower-like silver nanostructures
title_short Controlled synthesis and characterization of hollow flower-like silver nanostructures
title_sort controlled synthesis and characterization of hollow flower-like silver nanostructures
topic Methodology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3356183/
https://www.ncbi.nlm.nih.gov/pubmed/22619511
http://dx.doi.org/10.2147/IJN.S26524
work_keys_str_mv AT eidkamelam controlledsynthesisandcharacterizationofhollowflowerlikesilvernanostructures
AT azzazyhassanme controlledsynthesisandcharacterizationofhollowflowerlikesilvernanostructures