Cargando…

Induction of cell death in a glioblastoma line by hyperthermic therapy based on gold nanorods

BACKGROUND: Metallic nanorods are promising agents for a wide range of biomedical applications. In this study, we developed an optical hyperthermia method capable of inducing in vitro death of glioblastoma cells. METHODS: The procedure used was based on irradiation of gold nanorods with a continuous...

Descripción completa

Detalles Bibliográficos
Autores principales: Fernandez Cabada, Tamara, Sanchez Lopez de Pablo, Cristina, Martinez Serrano, Alberto, del Pozo Guerrero, Francisco, Serrano Olmedo, Jose Javier, Ramos Gomez, Milagros
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3356189/
https://www.ncbi.nlm.nih.gov/pubmed/22619509
http://dx.doi.org/10.2147/IJN.S28470
Descripción
Sumario:BACKGROUND: Metallic nanorods are promising agents for a wide range of biomedical applications. In this study, we developed an optical hyperthermia method capable of inducing in vitro death of glioblastoma cells. METHODS: The procedure used was based on irradiation of gold nanorods with a continuous wave laser. This kind of nanoparticle converts absorbed light into localized heat within a short period of time due to the surface plasmon resonance effect. The effectiveness of the method was determined by measuring changes in cell viability after laser irradiation of glioblastoma cells in the presence of gold nanorods. RESULTS: Laser irradiation in the presence of gold nanorods induced a significant decrease in cell viability, while no decrease in cell viability was observed with laser irradiation or incubation with gold nanorods alone. The mechanism of cell death mediated by gold nanorods during photothermal ablation was analyzed, indicating that treatment compromised the integrity of the cell membrane instead of initiating the process of programmed cell death. CONCLUSION: The use of gold nanorods in hyperthermal therapies is very effective in eliminating glioblastoma cells, and therefore represents an important area of research for therapeutic development.