Cargando…

Reducing Greenhouse Gas Emissions in Grassland Ecosystems of the Central Lithuania: Multi-Criteria Evaluation on a Basis of the ARAS Method

N(2)O, CH(4), and CO(2) are potential greenhouse gas (GHG) contributing to climate change; therefore, solutions have to be sought to reduce their emission from agriculture. This work evaluates GHG emission from grasslands submitted to different mineral fertilizers during vegetation period (June–Sept...

Descripción completa

Detalles Bibliográficos
Autores principales: Balezentiene, Ligita, Kusta, Albinas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Scientific World Journal 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3356744/
https://www.ncbi.nlm.nih.gov/pubmed/22645463
http://dx.doi.org/10.1100/2012/908384
Descripción
Sumario:N(2)O, CH(4), and CO(2) are potential greenhouse gas (GHG) contributing to climate change; therefore, solutions have to be sought to reduce their emission from agriculture. This work evaluates GHG emission from grasslands submitted to different mineral fertilizers during vegetation period (June–September) in two experimental sites, namely, seminatural grassland (8 treatments of mineral fertilizers) and cultural pasture (intensively managed) in the Training Farm of the Lithuanian University of Agriculture. Chamber method was applied for evaluation of GHG emissions on the field scale. As a result, soil chemical composition, compactness, temperature, and gravimetric moisture as well as biomass yield of fresh and dry biomass and botanical composition, were assessed during the research. Furthermore, a simulation of multi-criteria assessment of sustainable fertilizers management was carried out on a basis of ARAS method. The multicriteria analysis of different fertilizing regimes was based on a system of environmental and productivity indices. Consequently, agroecosystems of cultural pasture (N(180)P(120)K(150)) and seminatural grassland fertilizing rates N(180)P(120)K(150) and N(60)P(40)K(50) were evaluated as the most sustainable alternatives leading to reduction of emissions between biosphere-atmosphere and human-induced biogenic pollution in grassland ecosystems, thus contributing to improvement of countryside environment.