Cargando…

MicroRNAs as regulators in plant metal toxicity response

Metal toxicity is a major stress affecting crop production. This includes metals that are essential for plants (copper, iron, zinc, manganese), and non-essential metals (cadmium, aluminum, cobalt, mercury). A primary common effect of high concentrations of metal such as aluminum, copper, cadmium, or...

Descripción completa

Detalles Bibliográficos
Autores principales: Mendoza-Soto, Ana B., Sánchez, Federico, Hernández, Georgina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Research Foundation 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3356851/
https://www.ncbi.nlm.nih.gov/pubmed/22661980
http://dx.doi.org/10.3389/fpls.2012.00105
_version_ 1782233593763856384
author Mendoza-Soto, Ana B.
Sánchez, Federico
Hernández, Georgina
author_facet Mendoza-Soto, Ana B.
Sánchez, Federico
Hernández, Georgina
author_sort Mendoza-Soto, Ana B.
collection PubMed
description Metal toxicity is a major stress affecting crop production. This includes metals that are essential for plants (copper, iron, zinc, manganese), and non-essential metals (cadmium, aluminum, cobalt, mercury). A primary common effect of high concentrations of metal such as aluminum, copper, cadmium, or mercury is root growth inhibition. Metal toxicity triggers the accumulation of reactive oxygen species leading to damage of lipids, proteins, and DNA. The plants response to metal toxicity involves several biological processes that require fine and precise regulation at transcriptional and post-transcriptional levels. MicroRNAs (miRNAs) are 21 nucleotide non-coding RNAs that regulate gene expression at the post-transcriptional level. A miRNA, incorporated into a RNA-induced silencing complex, promotes cleavage of its target mRNA that is recognized by an almost perfect base complementarity. In plants, miRNA regulation is involved in development and also in biotic and abiotic stress responses. We review novel advances in identifying miRNAs related to metal toxicity responses and their potential role according to their targets. Most of the targets for plant metal-responsive miRNAs are transcription factors. Information about metal-responsive miRNAs in different plants points to important regulatory roles of miR319, miR390, miR393, and miR398. The target of miR319 is the TCP transcription factor, implicated in growth control. miR390 exerts its action through the biogenesis of trans-acting small interference RNAs that, in turn, regulate auxin responsive factors. miR393 targets the auxin receptors TIR1/AFBs and a bHLH transcription factor. Increasing evidence points to the crucial role of miR398 and its targets Cu/Zn superoxide dismutases in the control of the oxidative stress generated after high copper or iron exposure.
format Online
Article
Text
id pubmed-3356851
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Frontiers Research Foundation
record_format MEDLINE/PubMed
spelling pubmed-33568512012-06-01 MicroRNAs as regulators in plant metal toxicity response Mendoza-Soto, Ana B. Sánchez, Federico Hernández, Georgina Front Plant Sci Plant Science Metal toxicity is a major stress affecting crop production. This includes metals that are essential for plants (copper, iron, zinc, manganese), and non-essential metals (cadmium, aluminum, cobalt, mercury). A primary common effect of high concentrations of metal such as aluminum, copper, cadmium, or mercury is root growth inhibition. Metal toxicity triggers the accumulation of reactive oxygen species leading to damage of lipids, proteins, and DNA. The plants response to metal toxicity involves several biological processes that require fine and precise regulation at transcriptional and post-transcriptional levels. MicroRNAs (miRNAs) are 21 nucleotide non-coding RNAs that regulate gene expression at the post-transcriptional level. A miRNA, incorporated into a RNA-induced silencing complex, promotes cleavage of its target mRNA that is recognized by an almost perfect base complementarity. In plants, miRNA regulation is involved in development and also in biotic and abiotic stress responses. We review novel advances in identifying miRNAs related to metal toxicity responses and their potential role according to their targets. Most of the targets for plant metal-responsive miRNAs are transcription factors. Information about metal-responsive miRNAs in different plants points to important regulatory roles of miR319, miR390, miR393, and miR398. The target of miR319 is the TCP transcription factor, implicated in growth control. miR390 exerts its action through the biogenesis of trans-acting small interference RNAs that, in turn, regulate auxin responsive factors. miR393 targets the auxin receptors TIR1/AFBs and a bHLH transcription factor. Increasing evidence points to the crucial role of miR398 and its targets Cu/Zn superoxide dismutases in the control of the oxidative stress generated after high copper or iron exposure. Frontiers Research Foundation 2012-05-21 /pmc/articles/PMC3356851/ /pubmed/22661980 http://dx.doi.org/10.3389/fpls.2012.00105 Text en Copyright © Mendoza-Soto, Sánchez and Hernández. http://www.frontiersin.org/licenseagreement This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) , which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited.
spellingShingle Plant Science
Mendoza-Soto, Ana B.
Sánchez, Federico
Hernández, Georgina
MicroRNAs as regulators in plant metal toxicity response
title MicroRNAs as regulators in plant metal toxicity response
title_full MicroRNAs as regulators in plant metal toxicity response
title_fullStr MicroRNAs as regulators in plant metal toxicity response
title_full_unstemmed MicroRNAs as regulators in plant metal toxicity response
title_short MicroRNAs as regulators in plant metal toxicity response
title_sort micrornas as regulators in plant metal toxicity response
topic Plant Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3356851/
https://www.ncbi.nlm.nih.gov/pubmed/22661980
http://dx.doi.org/10.3389/fpls.2012.00105
work_keys_str_mv AT mendozasotoanab micrornasasregulatorsinplantmetaltoxicityresponse
AT sanchezfederico micrornasasregulatorsinplantmetaltoxicityresponse
AT hernandezgeorgina micrornasasregulatorsinplantmetaltoxicityresponse