Cargando…

Amyloid-β Induces Hepatic Insulin Resistance by Activating JAK2/STAT3/SOCS-1 Signaling Pathway

Epidemiological studies indicate that patients with Alzheimer’s disease (AD) have an increased risk of developing type 2 diabetes mellitus (T2DM), and experimental studies suggest that AD exacerbates T2DM, but the underlying mechanism is still largely unknown. This study aims to investigate whether...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yi, Zhou, Ben, Zhang, Fang, Wu, Jingxia, Hu, Yanan, Liu, Yang, Zhai, Qiwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Diabetes Association 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3357286/
https://www.ncbi.nlm.nih.gov/pubmed/22522613
http://dx.doi.org/10.2337/db11-0499
Descripción
Sumario:Epidemiological studies indicate that patients with Alzheimer’s disease (AD) have an increased risk of developing type 2 diabetes mellitus (T2DM), and experimental studies suggest that AD exacerbates T2DM, but the underlying mechanism is still largely unknown. This study aims to investigate whether amyloid-β (Aβ), a key player in AD pathogenesis, contributes to the development of insulin resistance, as well as the underlying mechanism. We find that plasma Aβ40/42 levels are increased in patients with hyperglycemia. APPswe/PSEN1dE9 transgenic AD model mice with increased plasma Aβ40/42 levels show impaired glucose and insulin tolerance and hyperinsulinemia. Furthermore, Aβ impairs insulin signaling in mouse liver and cultured hepatocytes. Aβ can upregulate suppressors of cytokine signaling (SOCS)-1, a well-known insulin signaling inhibitor. Knockdown of SOCS-1 alleviates Aβ-induced impairment of insulin signaling. Moreover, JAK2/STAT3 is activated by Aβ, and inhibition of JAK2/STAT3 signaling attenuates Aβ-induced upregulation of SOCS-1 and insulin resistance in hepatocytes. Our results demonstrate that Aβ induces hepatic insulin resistance by activating JAK2/STAT3/SOCS-1 signaling pathway and have implications toward resolving insulin resistance and T2DM.