Cargando…
Gluteofemoral Adipose Tissue Plays a Major Role in Production of the Lipokine Palmitoleate in Humans
The expansion of lower-body adipose tissue (AT) is paradoxically associated with reduced cardiovascular disease and diabetes risk. We examined whether the beneficial metabolic properties of lower-body AT are related to the production and release of the insulin-sensitizing lipokine palmitoleate (16:1...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Diabetes Association
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3357300/ https://www.ncbi.nlm.nih.gov/pubmed/22492525 http://dx.doi.org/10.2337/db11-1810 |
_version_ | 1782233657825558528 |
---|---|
author | Pinnick, Katherine E. Neville, Matt J. Fielding, Barbara A. Frayn, Keith N. Karpe, Fredrik Hodson, Leanne |
author_facet | Pinnick, Katherine E. Neville, Matt J. Fielding, Barbara A. Frayn, Keith N. Karpe, Fredrik Hodson, Leanne |
author_sort | Pinnick, Katherine E. |
collection | PubMed |
description | The expansion of lower-body adipose tissue (AT) is paradoxically associated with reduced cardiovascular disease and diabetes risk. We examined whether the beneficial metabolic properties of lower-body AT are related to the production and release of the insulin-sensitizing lipokine palmitoleate (16:1n-7). Using venoarterial difference sampling, we investigated the relative release of 16:1n-7 from lower-body (gluteofemoral) and upper-body (abdominal subcutaneous) AT depots. Paired gluteofemoral and abdominal subcutaneous AT samples were analyzed for triglyceride fatty acid composition and mRNA expression. Finally, the triglyceride fatty acid composition of isolated human preadipocytes was determined. Relative release of 16:1n-7 was markedly higher from gluteofemoral AT compared with abdominal subcutaneous AT. Stearoyl-CoA desaturase 1 (SCD1), the key enzyme involved in endogenous 16:1n-7 production, was more highly expressed in gluteofemoral AT and was associated with greater enrichment of 16:1n-7. Furthermore, isolated human preadipocytes from gluteofemoral AT displayed a higher content of SCD1-derived fatty acids. We demonstrate that human gluteofemoral AT plays a major role in determining systemic concentrations of the lipokine palmitoleate. Moreover, this appears to be an inherent feature of gluteofemoral AT. We propose that the beneficial metabolic properties of lower-body AT may be partly explained by the intrinsically greater production and release of palmitoleate. |
format | Online Article Text |
id | pubmed-3357300 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | American Diabetes Association |
record_format | MEDLINE/PubMed |
spelling | pubmed-33573002013-06-01 Gluteofemoral Adipose Tissue Plays a Major Role in Production of the Lipokine Palmitoleate in Humans Pinnick, Katherine E. Neville, Matt J. Fielding, Barbara A. Frayn, Keith N. Karpe, Fredrik Hodson, Leanne Diabetes Metabolism The expansion of lower-body adipose tissue (AT) is paradoxically associated with reduced cardiovascular disease and diabetes risk. We examined whether the beneficial metabolic properties of lower-body AT are related to the production and release of the insulin-sensitizing lipokine palmitoleate (16:1n-7). Using venoarterial difference sampling, we investigated the relative release of 16:1n-7 from lower-body (gluteofemoral) and upper-body (abdominal subcutaneous) AT depots. Paired gluteofemoral and abdominal subcutaneous AT samples were analyzed for triglyceride fatty acid composition and mRNA expression. Finally, the triglyceride fatty acid composition of isolated human preadipocytes was determined. Relative release of 16:1n-7 was markedly higher from gluteofemoral AT compared with abdominal subcutaneous AT. Stearoyl-CoA desaturase 1 (SCD1), the key enzyme involved in endogenous 16:1n-7 production, was more highly expressed in gluteofemoral AT and was associated with greater enrichment of 16:1n-7. Furthermore, isolated human preadipocytes from gluteofemoral AT displayed a higher content of SCD1-derived fatty acids. We demonstrate that human gluteofemoral AT plays a major role in determining systemic concentrations of the lipokine palmitoleate. Moreover, this appears to be an inherent feature of gluteofemoral AT. We propose that the beneficial metabolic properties of lower-body AT may be partly explained by the intrinsically greater production and release of palmitoleate. American Diabetes Association 2012-06 2012-05-14 /pmc/articles/PMC3357300/ /pubmed/22492525 http://dx.doi.org/10.2337/db11-1810 Text en © 2012 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details. |
spellingShingle | Metabolism Pinnick, Katherine E. Neville, Matt J. Fielding, Barbara A. Frayn, Keith N. Karpe, Fredrik Hodson, Leanne Gluteofemoral Adipose Tissue Plays a Major Role in Production of the Lipokine Palmitoleate in Humans |
title | Gluteofemoral Adipose Tissue Plays a Major Role in Production of the Lipokine Palmitoleate in Humans |
title_full | Gluteofemoral Adipose Tissue Plays a Major Role in Production of the Lipokine Palmitoleate in Humans |
title_fullStr | Gluteofemoral Adipose Tissue Plays a Major Role in Production of the Lipokine Palmitoleate in Humans |
title_full_unstemmed | Gluteofemoral Adipose Tissue Plays a Major Role in Production of the Lipokine Palmitoleate in Humans |
title_short | Gluteofemoral Adipose Tissue Plays a Major Role in Production of the Lipokine Palmitoleate in Humans |
title_sort | gluteofemoral adipose tissue plays a major role in production of the lipokine palmitoleate in humans |
topic | Metabolism |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3357300/ https://www.ncbi.nlm.nih.gov/pubmed/22492525 http://dx.doi.org/10.2337/db11-1810 |
work_keys_str_mv | AT pinnickkatherinee gluteofemoraladiposetissueplaysamajorroleinproductionofthelipokinepalmitoleateinhumans AT nevillemattj gluteofemoraladiposetissueplaysamajorroleinproductionofthelipokinepalmitoleateinhumans AT fieldingbarbaraa gluteofemoraladiposetissueplaysamajorroleinproductionofthelipokinepalmitoleateinhumans AT fraynkeithn gluteofemoraladiposetissueplaysamajorroleinproductionofthelipokinepalmitoleateinhumans AT karpefredrik gluteofemoraladiposetissueplaysamajorroleinproductionofthelipokinepalmitoleateinhumans AT hodsonleanne gluteofemoraladiposetissueplaysamajorroleinproductionofthelipokinepalmitoleateinhumans |