Cargando…

Constrained evolution drives limited influenza diversity

H3N2 influenza A viruses have been widely circulating in human populations since the pandemic of 1968. A striking feature of the evolutionary development of this strain has been its 'canalized' nature, with narrow evolutionary trees dominated by long trunks with few branching, or bifurcati...

Descripción completa

Detalles Bibliográficos
Autores principales: Thomas, Paul G, Hertz, Tomer
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3357320/
https://www.ncbi.nlm.nih.gov/pubmed/22613866
http://dx.doi.org/10.1186/1741-7007-10-43
Descripción
Sumario:H3N2 influenza A viruses have been widely circulating in human populations since the pandemic of 1968. A striking feature of the evolutionary development of this strain has been its 'canalized' nature, with narrow evolutionary trees dominated by long trunks with few branching, or bifurcation events and a consequent lack of standing diversity at any single point. This is puzzling, as one might expect that the strong human immune response against the virus would create an environment encouraging more diversity, not less. Previous models have used various assumptions in order to account for this finding. A new analysis published in BMC Biology suggests that this processive evolution down a single path can be recapitulated by a relatively simple model incorporating only two primary parameters - the mutation rate of the virus, and the immunological distance created by each mutation - so long as these parameters are within a particular narrow but biologically plausible range. See research article: http://www.biomedcentral.com/1741-7007/10/38