Cargando…

Dissection of Influenza A Virus M1 Protein: pH-Dependent Oligomerization of N-Terminal Domain and Dimerization of C-Terminal Domain

BACKGROUND: The matrix 1 (M1) protein of Influenza A virus plays many critical roles throughout the virus life cycle. The oligomerization of M1 is essential for the formation of the viral matrix layer during the assembly and budding process. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we r...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Ke, Wang, Zhao, Liu, Xiaoling, Yin, Changcheng, Basit, Zeshan, Xia, Bin, Liu, Wenjun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3360003/
https://www.ncbi.nlm.nih.gov/pubmed/22655068
http://dx.doi.org/10.1371/journal.pone.0037786
Descripción
Sumario:BACKGROUND: The matrix 1 (M1) protein of Influenza A virus plays many critical roles throughout the virus life cycle. The oligomerization of M1 is essential for the formation of the viral matrix layer during the assembly and budding process. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we report that M1 can oligomerize in vitro, and that the oligomerization is pH-dependent. The N-terminal domain of M1 alone exists as multiple-order oligomers at pH 7.4, and the C-terminal domain alone forms an exclusively stable dimer. As a result, intact M1 can display different forms of oligomers and dimer is the smallest oligomerization state, at neutral pH. At pH 5.0, oligomers of the N-terminal domain completely dissociate into monomers, while the C-terminal domain remains in dimeric form. As a result, oligomers of intact M1 dissociate into a stable dimer at acidic pH. CONCLUSIONS/SIGNIFICANCE: Oligomerization of M1 involves both the N- and C-terminal domains. The N-terminal domain determines the pH-dependent oligomerization characteristic, and C-terminal domain forms a stable dimer, which contributes to the dimerization of M1. The present study will help to unveil the mechanisms of influenza A virus assembly and uncoating process.