Cargando…
Gas7-Deficient Mouse Reveals Roles in Motor Function and Muscle Fiber Composition during Aging
BACKGROUND: Growth arrest-specific gene 7 (Gas7) has previously been shown to be involved in neurite outgrowth in vitro; however, its actual role has yet to be determined. To investigate the physiological function of Gas7 in vivo, here we generated a Gas7-deficient mouse strain with a labile Gas7 mu...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3360064/ https://www.ncbi.nlm.nih.gov/pubmed/22662195 http://dx.doi.org/10.1371/journal.pone.0037702 |
_version_ | 1782233949160865792 |
---|---|
author | Huang, Bo-Tsang Chang, Pu-Yuan Su, Ching-Hua Chao, Chuck C.-K. Lin-Chao, Sue |
author_facet | Huang, Bo-Tsang Chang, Pu-Yuan Su, Ching-Hua Chao, Chuck C.-K. Lin-Chao, Sue |
author_sort | Huang, Bo-Tsang |
collection | PubMed |
description | BACKGROUND: Growth arrest-specific gene 7 (Gas7) has previously been shown to be involved in neurite outgrowth in vitro; however, its actual role has yet to be determined. To investigate the physiological function of Gas7 in vivo, here we generated a Gas7-deficient mouse strain with a labile Gas7 mutant protein whose functions are similar to wild-type Gas7. METHODOLOGY/PRINCIPAL FINDINGS: Our data show that aged Gas7-deficient mice have motor activity defects due to decreases in the number of spinal motor neurons and in muscle strength, of which the latter may be caused by changes in muscle fiber composition as shown in the soleus. In cross sections of the soleus of Gas7-deficient mice, gross morphological features and levels of myosin heavy chain I (MHC I) and MHC II markers revealed significantly fewer fast fibers. In addition, we found that nerve terminal sprouting, which may be associated with slow and fast muscle fiber composition, was considerably reduced at neuromuscular junctions (NMJ) during aging. CONCLUSIONS/SIGNIFICANCE: These findings indicate that Gas7 is involved in motor neuron function associated with muscle strength maintenance. |
format | Online Article Text |
id | pubmed-3360064 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-33600642012-06-01 Gas7-Deficient Mouse Reveals Roles in Motor Function and Muscle Fiber Composition during Aging Huang, Bo-Tsang Chang, Pu-Yuan Su, Ching-Hua Chao, Chuck C.-K. Lin-Chao, Sue PLoS One Research Article BACKGROUND: Growth arrest-specific gene 7 (Gas7) has previously been shown to be involved in neurite outgrowth in vitro; however, its actual role has yet to be determined. To investigate the physiological function of Gas7 in vivo, here we generated a Gas7-deficient mouse strain with a labile Gas7 mutant protein whose functions are similar to wild-type Gas7. METHODOLOGY/PRINCIPAL FINDINGS: Our data show that aged Gas7-deficient mice have motor activity defects due to decreases in the number of spinal motor neurons and in muscle strength, of which the latter may be caused by changes in muscle fiber composition as shown in the soleus. In cross sections of the soleus of Gas7-deficient mice, gross morphological features and levels of myosin heavy chain I (MHC I) and MHC II markers revealed significantly fewer fast fibers. In addition, we found that nerve terminal sprouting, which may be associated with slow and fast muscle fiber composition, was considerably reduced at neuromuscular junctions (NMJ) during aging. CONCLUSIONS/SIGNIFICANCE: These findings indicate that Gas7 is involved in motor neuron function associated with muscle strength maintenance. Public Library of Science 2012-05-25 /pmc/articles/PMC3360064/ /pubmed/22662195 http://dx.doi.org/10.1371/journal.pone.0037702 Text en Huang et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Huang, Bo-Tsang Chang, Pu-Yuan Su, Ching-Hua Chao, Chuck C.-K. Lin-Chao, Sue Gas7-Deficient Mouse Reveals Roles in Motor Function and Muscle Fiber Composition during Aging |
title | Gas7-Deficient Mouse Reveals Roles in Motor Function and Muscle Fiber Composition during Aging |
title_full | Gas7-Deficient Mouse Reveals Roles in Motor Function and Muscle Fiber Composition during Aging |
title_fullStr | Gas7-Deficient Mouse Reveals Roles in Motor Function and Muscle Fiber Composition during Aging |
title_full_unstemmed | Gas7-Deficient Mouse Reveals Roles in Motor Function and Muscle Fiber Composition during Aging |
title_short | Gas7-Deficient Mouse Reveals Roles in Motor Function and Muscle Fiber Composition during Aging |
title_sort | gas7-deficient mouse reveals roles in motor function and muscle fiber composition during aging |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3360064/ https://www.ncbi.nlm.nih.gov/pubmed/22662195 http://dx.doi.org/10.1371/journal.pone.0037702 |
work_keys_str_mv | AT huangbotsang gas7deficientmouserevealsrolesinmotorfunctionandmusclefibercompositionduringaging AT changpuyuan gas7deficientmouserevealsrolesinmotorfunctionandmusclefibercompositionduringaging AT suchinghua gas7deficientmouserevealsrolesinmotorfunctionandmusclefibercompositionduringaging AT chaochuckck gas7deficientmouserevealsrolesinmotorfunctionandmusclefibercompositionduringaging AT linchaosue gas7deficientmouserevealsrolesinmotorfunctionandmusclefibercompositionduringaging |