Cargando…
Reduced Cortisol and Metabolic Responses of Thin Ewes to an Acute Cold Challenge in Mid-Pregnancy: Implications for Animal Physiology and Welfare
BACKGROUND: Low food availability leading to reductions in Body Condition Score (BCS; 0 indicates emaciation and 5 obesity) in sheep often coincides with low temperatures associated with the onset of winter in New Zealand. The ability to adapt to reductions in environmental temperature may be impair...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3360704/ https://www.ncbi.nlm.nih.gov/pubmed/22662144 http://dx.doi.org/10.1371/journal.pone.0037315 |
_version_ | 1782234040678481920 |
---|---|
author | Verbeek, Else Oliver, Mark Hope Waas, Joseph Rupert McLeay, Lance Maxwell Blache, Dominique Matthews, Lindsay Ross |
author_facet | Verbeek, Else Oliver, Mark Hope Waas, Joseph Rupert McLeay, Lance Maxwell Blache, Dominique Matthews, Lindsay Ross |
author_sort | Verbeek, Else |
collection | PubMed |
description | BACKGROUND: Low food availability leading to reductions in Body Condition Score (BCS; 0 indicates emaciation and 5 obesity) in sheep often coincides with low temperatures associated with the onset of winter in New Zealand. The ability to adapt to reductions in environmental temperature may be impaired in animals with low BCS, in particular during pregnancy when metabolic demand is higher. Here we assess whether BCS affects a pregnant animal's ability to cope with cold challenges. METHODS: Eighteen pregnant ewes with a BCS of 2.7±0.1 were fed to attain low (LBC: BCS2.3±0.1), medium (MBC: BCS3.2±0.2) or high BCS (HBC: BCS3.6±0.2). Shorn ewes were exposed to a 6-h acute cold challenge in a climate-controlled room (wet and windy conditions, 4.4±0.1°C) in mid-pregnancy. Blood samples were collected during the BCS change phase, acute cold challenge and recovery phase. RESULTS: During the BCS change phase, plasma glucose and leptin concentrations declined while free fatty acids (FFA) increased in LBC compared to MBC (P<0.01, P<0.01 and P<0.05, respectively) and HBC ewes (P<0.05, P<0.01 and P<0.01, respectively). During the cold challenge, plasma cortisol concentrations were lower in LBC than MBC (P<0.05) and HBC ewes (P<0.05), and FFA and insulin concentrations were lower in LBC than HBC ewes (P<0.05 and P<0.001, respectively). Leptin concentrations declined in MBC and HBC ewes while remaining unchanged in LBC ewes (P<0.01). Glucose concentrations and internal body temperature (T(core)) increased in all treatments, although peak T(core) tended to be higher in HBC ewes (P<0.1). During the recovery phase, T4 concentrations were lower in LBC ewes (P<0.05). CONCLUSION: Even though all ewes were able to increase T(core) and mobilize glucose, low BCS animals had considerably reduced cortisol and metabolic responses to a cold challenge in mid-pregnancy, suggesting that their ability to adapt to cold challenges through some of the expected pathways was reduced. |
format | Online Article Text |
id | pubmed-3360704 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-33607042012-06-01 Reduced Cortisol and Metabolic Responses of Thin Ewes to an Acute Cold Challenge in Mid-Pregnancy: Implications for Animal Physiology and Welfare Verbeek, Else Oliver, Mark Hope Waas, Joseph Rupert McLeay, Lance Maxwell Blache, Dominique Matthews, Lindsay Ross PLoS One Research Article BACKGROUND: Low food availability leading to reductions in Body Condition Score (BCS; 0 indicates emaciation and 5 obesity) in sheep often coincides with low temperatures associated with the onset of winter in New Zealand. The ability to adapt to reductions in environmental temperature may be impaired in animals with low BCS, in particular during pregnancy when metabolic demand is higher. Here we assess whether BCS affects a pregnant animal's ability to cope with cold challenges. METHODS: Eighteen pregnant ewes with a BCS of 2.7±0.1 were fed to attain low (LBC: BCS2.3±0.1), medium (MBC: BCS3.2±0.2) or high BCS (HBC: BCS3.6±0.2). Shorn ewes were exposed to a 6-h acute cold challenge in a climate-controlled room (wet and windy conditions, 4.4±0.1°C) in mid-pregnancy. Blood samples were collected during the BCS change phase, acute cold challenge and recovery phase. RESULTS: During the BCS change phase, plasma glucose and leptin concentrations declined while free fatty acids (FFA) increased in LBC compared to MBC (P<0.01, P<0.01 and P<0.05, respectively) and HBC ewes (P<0.05, P<0.01 and P<0.01, respectively). During the cold challenge, plasma cortisol concentrations were lower in LBC than MBC (P<0.05) and HBC ewes (P<0.05), and FFA and insulin concentrations were lower in LBC than HBC ewes (P<0.05 and P<0.001, respectively). Leptin concentrations declined in MBC and HBC ewes while remaining unchanged in LBC ewes (P<0.01). Glucose concentrations and internal body temperature (T(core)) increased in all treatments, although peak T(core) tended to be higher in HBC ewes (P<0.1). During the recovery phase, T4 concentrations were lower in LBC ewes (P<0.05). CONCLUSION: Even though all ewes were able to increase T(core) and mobilize glucose, low BCS animals had considerably reduced cortisol and metabolic responses to a cold challenge in mid-pregnancy, suggesting that their ability to adapt to cold challenges through some of the expected pathways was reduced. Public Library of Science 2012-05-25 /pmc/articles/PMC3360704/ /pubmed/22662144 http://dx.doi.org/10.1371/journal.pone.0037315 Text en Verbeek et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Verbeek, Else Oliver, Mark Hope Waas, Joseph Rupert McLeay, Lance Maxwell Blache, Dominique Matthews, Lindsay Ross Reduced Cortisol and Metabolic Responses of Thin Ewes to an Acute Cold Challenge in Mid-Pregnancy: Implications for Animal Physiology and Welfare |
title | Reduced Cortisol and Metabolic Responses of Thin Ewes to an Acute Cold Challenge in Mid-Pregnancy: Implications for Animal Physiology and Welfare |
title_full | Reduced Cortisol and Metabolic Responses of Thin Ewes to an Acute Cold Challenge in Mid-Pregnancy: Implications for Animal Physiology and Welfare |
title_fullStr | Reduced Cortisol and Metabolic Responses of Thin Ewes to an Acute Cold Challenge in Mid-Pregnancy: Implications for Animal Physiology and Welfare |
title_full_unstemmed | Reduced Cortisol and Metabolic Responses of Thin Ewes to an Acute Cold Challenge in Mid-Pregnancy: Implications for Animal Physiology and Welfare |
title_short | Reduced Cortisol and Metabolic Responses of Thin Ewes to an Acute Cold Challenge in Mid-Pregnancy: Implications for Animal Physiology and Welfare |
title_sort | reduced cortisol and metabolic responses of thin ewes to an acute cold challenge in mid-pregnancy: implications for animal physiology and welfare |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3360704/ https://www.ncbi.nlm.nih.gov/pubmed/22662144 http://dx.doi.org/10.1371/journal.pone.0037315 |
work_keys_str_mv | AT verbeekelse reducedcortisolandmetabolicresponsesofthinewestoanacutecoldchallengeinmidpregnancyimplicationsforanimalphysiologyandwelfare AT olivermarkhope reducedcortisolandmetabolicresponsesofthinewestoanacutecoldchallengeinmidpregnancyimplicationsforanimalphysiologyandwelfare AT waasjosephrupert reducedcortisolandmetabolicresponsesofthinewestoanacutecoldchallengeinmidpregnancyimplicationsforanimalphysiologyandwelfare AT mcleaylancemaxwell reducedcortisolandmetabolicresponsesofthinewestoanacutecoldchallengeinmidpregnancyimplicationsforanimalphysiologyandwelfare AT blachedominique reducedcortisolandmetabolicresponsesofthinewestoanacutecoldchallengeinmidpregnancyimplicationsforanimalphysiologyandwelfare AT matthewslindsayross reducedcortisolandmetabolicresponsesofthinewestoanacutecoldchallengeinmidpregnancyimplicationsforanimalphysiologyandwelfare |