Cargando…
MicroRNA-9 Reveals Regional Diversity of Neural Progenitors along the Anterior-Posterior Axis
Neural progenitors self-renew and generate neurons throughout the central nervous system. Here, we uncover an unexpected regional specificity in the properties of neural progenitor cells, revealed by the function of a microRNA—miR-9. miR-9 is expressed in neural progenitors, and its knockdown result...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3361082/ https://www.ncbi.nlm.nih.gov/pubmed/21238922 http://dx.doi.org/10.1016/j.devcel.2010.11.018 |
_version_ | 1782234080021053440 |
---|---|
author | Bonev, Boyan Pisco, Angela Papalopulu, Nancy |
author_facet | Bonev, Boyan Pisco, Angela Papalopulu, Nancy |
author_sort | Bonev, Boyan |
collection | PubMed |
description | Neural progenitors self-renew and generate neurons throughout the central nervous system. Here, we uncover an unexpected regional specificity in the properties of neural progenitor cells, revealed by the function of a microRNA—miR-9. miR-9 is expressed in neural progenitors, and its knockdown results in an inhibition of neurogenesis along the anterior-posterior axis. However, the underlying mechanism differs—in the hindbrain, progenitors fail to exit the cell cycle, whereas in the forebrain they undergo apoptosis, counteracting the proliferative effect. Among several targets, we functionally identify hairy1 as a primary target of miR-9, regulated at the mRNA level. hairy1 mediates the effects of miR-9 on proliferation, through Fgf8 signaling in the forebrain and Wnt signaling in the hindbrain, but affects apoptosis only in the forebrain, via the p53 pathway. Our findings show a positional difference in the responsiveness of progenitors to miR-9 depletion, revealing an underlying divergence of their properties. |
format | Online Article Text |
id | pubmed-3361082 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-33610822012-05-31 MicroRNA-9 Reveals Regional Diversity of Neural Progenitors along the Anterior-Posterior Axis Bonev, Boyan Pisco, Angela Papalopulu, Nancy Dev Cell Article Neural progenitors self-renew and generate neurons throughout the central nervous system. Here, we uncover an unexpected regional specificity in the properties of neural progenitor cells, revealed by the function of a microRNA—miR-9. miR-9 is expressed in neural progenitors, and its knockdown results in an inhibition of neurogenesis along the anterior-posterior axis. However, the underlying mechanism differs—in the hindbrain, progenitors fail to exit the cell cycle, whereas in the forebrain they undergo apoptosis, counteracting the proliferative effect. Among several targets, we functionally identify hairy1 as a primary target of miR-9, regulated at the mRNA level. hairy1 mediates the effects of miR-9 on proliferation, through Fgf8 signaling in the forebrain and Wnt signaling in the hindbrain, but affects apoptosis only in the forebrain, via the p53 pathway. Our findings show a positional difference in the responsiveness of progenitors to miR-9 depletion, revealing an underlying divergence of their properties. Cell Press 2011-01-18 /pmc/articles/PMC3361082/ /pubmed/21238922 http://dx.doi.org/10.1016/j.devcel.2010.11.018 Text en © 2011 ELL & Excerpta Medica. https://creativecommons.org/licenses/by/3.0/ Open Access under CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/) license |
spellingShingle | Article Bonev, Boyan Pisco, Angela Papalopulu, Nancy MicroRNA-9 Reveals Regional Diversity of Neural Progenitors along the Anterior-Posterior Axis |
title | MicroRNA-9 Reveals Regional Diversity of Neural Progenitors along the Anterior-Posterior Axis |
title_full | MicroRNA-9 Reveals Regional Diversity of Neural Progenitors along the Anterior-Posterior Axis |
title_fullStr | MicroRNA-9 Reveals Regional Diversity of Neural Progenitors along the Anterior-Posterior Axis |
title_full_unstemmed | MicroRNA-9 Reveals Regional Diversity of Neural Progenitors along the Anterior-Posterior Axis |
title_short | MicroRNA-9 Reveals Regional Diversity of Neural Progenitors along the Anterior-Posterior Axis |
title_sort | microrna-9 reveals regional diversity of neural progenitors along the anterior-posterior axis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3361082/ https://www.ncbi.nlm.nih.gov/pubmed/21238922 http://dx.doi.org/10.1016/j.devcel.2010.11.018 |
work_keys_str_mv | AT bonevboyan microrna9revealsregionaldiversityofneuralprogenitorsalongtheanteriorposterioraxis AT piscoangela microrna9revealsregionaldiversityofneuralprogenitorsalongtheanteriorposterioraxis AT papalopulunancy microrna9revealsregionaldiversityofneuralprogenitorsalongtheanteriorposterioraxis |